Skip to main content

Combining Theories: The Ackerman and Guarded Fragments

  • Conference paper
Frontiers of Combining Systems (FroCoS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6989))

Included in the following conference series:

Abstract

Combination of decision procedures is at the heart of Satisfiability Modulo Theories (SMT) solvers. It provides ways to compose decision procedures for expressive languages which mix symbols from various decidable theories. Typical combinations include (linear) arithmetic, uninterpreted symbols, arrays operators, etc. In [7] we showed that any first-order theory from the Bernays-Schönfinkel-Ramsey fragment, the two variable fragment, or the monadic fragment can be combined with virtually any other decidable theory. Here, we complete the picture by considering the Ackermann fragment, and several guarded fragments. All theories in these fragments can be combined with other decidable (combinations of) theories, with only minor restrictions. In particular, it is not required for these other theories to be stably-infinite.

This work is partly supported by the ANR project DECERT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andréka, H., Németi, I., van Benthem, J.: Modal logics and bounded fragments of predicate logic. Journal of Philosophical Logic 27(3), 217–274 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, ch. 26, pp. 825–885. IOS Press, Amsterdam (2009)

    Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  4. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics. Elsevier, Amsterdam (2006)

    Google Scholar 

  5. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  6. Dreben, B., Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quantificational Formulas. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  7. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 263–278. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Fontaine, P., Gribomont, E.P.: Combining non-stably infinite, non-first order theories. In: Ahrendt, W., Baumgartner, P., de Nivelle, H., Ranise, S., Tinelli, C. (eds.) Selected Papers from the Workshops on Disproving and the Second International Workshop on Pragmatics of Decision Procedures (PDPAR 2004). ENTCS, vol. 125, pp. 37–51 (2005)

    Google Scholar 

  9. Grädel, E.: Why are modal logics so robustly decidable? In: Current Trends in Theoretical Computer Science. Entering the 21st Century, pp. 393–408. World Scientific, Singapore (2001)

    Google Scholar 

  10. Grädel, E.: Guarded fixed point logics and the monadic theory of countable trees. Theoretical Computer Science 288(1), 129–152 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grädel, E., Walukiewicz, I.: Guarded fixed point logic. In: Logic In Computer Science (LICS), pp. 45–54. IEEE Computer Society Press, Washington, USA (1999)

    Google Scholar 

  12. Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64, 1719–1742 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grädel, E.: Decision procedures for guarded logics. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 31–51. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Hodkinson, I.M.: Loosely guarded fragment of first-order logic has the finite model property. Studia Logica 70(2), 205–240 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Marx, M.: Tolerance logic. Journal of Logic, Language and Information 10(3), 353–374 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nelson, G., Oppen, D.C.: Simplifications by cooperating decision procedures. ACM Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  17. Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson–Oppen combination procedure. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems (FroCoS), pp. 103–120. Kluwer, Dordrecht (1996)

    Chapter  Google Scholar 

  18. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tinelli, C., Zarba, C.G.: Combining non-stably infinite theories. Journal of Automated Reasoning 34(3), 209–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. van Benthem, J.: Dynamic bits and pieces. Technical Report LP-1997-01, ILLC, University of Amsterdam (January 1997)

    Google Scholar 

  21. Vardi, M.: Why is modal logic so robustly decidable? DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 149–184. AMS, Providence (1997)

    MATH  Google Scholar 

  22. Wies, T., Piskac, R., Kuncak, V.: Combining Theories with Shared Set Operations. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 366–382. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Areces, C., Fontaine, P. (2011). Combining Theories: The Ackerman and Guarded Fragments. In: Tinelli, C., Sofronie-Stokkermans, V. (eds) Frontiers of Combining Systems. FroCoS 2011. Lecture Notes in Computer Science(), vol 6989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24364-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24364-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24363-9

  • Online ISBN: 978-3-642-24364-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics