Maximum Metric Spanning Tree Made Byzantine Tolerant

  • Swan Dubois
  • Toshimitsu Masuzawa
  • Sébastien Tixeuil
Conference paper

DOI: 10.1007/978-3-642-24100-0_14

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6950)
Cite this paper as:
Dubois S., Masuzawa T., Tixeuil S. (2011) Maximum Metric Spanning Tree Made Byzantine Tolerant. In: Peleg D. (eds) Distributed Computing. DISC 2011. Lecture Notes in Computer Science, vol 6950. Springer, Berlin, Heidelberg

Abstract

Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permits to cope with arbitrary malicious behaviors. This paper focuses on systems that are both self-stabilizing and Byzantine tolerant.

We consider the well known problem of constructing a maximum metric tree in this context. Combining these two properties is known to induce many impossibility results. In this paper, we first provide two new impossibility results about the construction of a maximum metric tree in presence of transient and (permanent) Byzantine faults. Then, we propose a new self-stabilizing protocol that provides optimal containment to an arbitrary number of Byzantine faults.

Keywords

Byzantine fault Distributed protocol Fault tolerance Stabilization Spanning tree construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Swan Dubois
    • 1
  • Toshimitsu Masuzawa
    • 2
  • Sébastien Tixeuil
    • 3
  1. 1.UPMC Sorbonne Universités & INRIAFrance
  2. 2.Osaka UniversityJapan
  3. 3.UPMC Sorbonne Universités & Institut Universitaire de FranceFrance

Personalised recommendations