Skip to main content

Heterogeneous Mathematical Models in Fluid Dynamics and Associated Solution Algorithms

  • Chapter
  • First Online:
Multiscale and Adaptivity: Modeling, Numerics and Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2040))

Abstract

Mathematical models of complex physical problems can be based on heterogeneous differential equations, i.e. on boundary-value problems of different kind in different subregions of the computational domain. In this presentation we will introduce a few representative examples, we will illustrate the way the coupling conditions between the different models can be devised, then we will address several solution algorithms and discuss their properties of convergence as well as their robustness with respect to the variation of the physical parameters that characterize the submodels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Agoshkov, P. Gervasio, A. Quarteroni, Optimal control in heterogeneous domain decomposition methods for advection-diffusion equations. Mediterr. J. Math. 3(2), 147–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Aguilar, F. Lisbona, Interface conditions for a kind of non linear elliptic hyperbolic problems, in Domain Decomposition Methods for Partial Differential Equations, ed. by A. Quarteroni, J. Périeaux, Y.A. Kuznetsov, O.B. Widlund (American Mathematical Society, Providence, 1994), pp. 89–95

    Google Scholar 

  3. F. Brezzi, C. Canuto, A. Russo, A self-adaptive formulation for the Euler/Navier–Stokes coupling. Comput. Meth. Appl. Mech. Eng. 73, 317–330 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Badea, M. Discacciati, A. Quarteroni, Numerical analysis of the Navier–Stokes/Darcy coupling. Technical Report, Ecole Polytechnique Fédérale de Lausanne, IACS-CMCS, 2008

    Google Scholar 

  5. G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  6. X.C. Cai, Some Domain Decompostion Algorithms for Nonselfadjoint Elliptic and Parabolic Partial Differential Equations. Technical Report TR-461, Department of Computer Science, Courant Institute, 1989

    Google Scholar 

  7. X.-C. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations. Numer. Math. 60(1), 41–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics (Springer, Heidelberg, 2007)

    Google Scholar 

  9. A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1992)

    Google Scholar 

  10. T.F. Chan, T.P. Mathew, Domain decomposition algorithms, in Acta Numer. (Cambridge University Press, Cambridge, 1994), pp. 61–143

    Google Scholar 

  11. C. Carlenzoli, A. Quarteroni, Adaptive domain decomposition methods for advection-diffusion problems, in Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations (Minneapolis, MN, 1993), IMA Volumes in Mathematics and its Applications, vol. 75 (Springer, New York, 1995), pp. 165–186

    Google Scholar 

  12. K. Deckelnick, G. Dziuk, C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Q.V. Dinh, R. Glowinski, J. Périaux, Applications of domain decomposition techniques to the numerical solution of the Navier–Stokes equations, in Numerical Methods for Engineering, vol. 1 (Dunod, Paris, 1980), pp. 383–404

    Google Scholar 

  14. Q.V. Dinh, R. Glowinski, J. Périaux, G. Terrasson, On the coupling of viscous and inviscid models for incompressible fluid flows via domain decomposition, in First Conf. on Domain Decomposition Methods for Partial Differential Equations, ed. by G.A. Meurant, R. Glowinski, G.H. Golub, J. Périaux (SIAM, Philadelphia, 1988), pp. 350–368

    Google Scholar 

  15. M. Discacciati, P. Gervasio, A. Quarteroni, Virtual controls for heterogeneous problems. Technical Report, in progress.

    Google Scholar 

  16. M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2004

    Google Scholar 

  17. M. Discacciati, Iterative methods for Stokes/Darcy coupling, in Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering (40), ed. by R. Kornhuber et al. (Springer, Berlin and Heidelberg, 2004) pp. 563–570

    Google Scholar 

  18. M. Discacciati, E. Miglio, A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Discacciati, A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, in Numerical Mathematics and Advanced Applications, ENUMATH 2001 ed. by F. Brezzi, A. Buffa, S. Corsaro, A. Murli (Springer, Milan, 2003), pp. 3–20

    Google Scholar 

  20. M. Discacciati, A. Quarteroni, Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22(2), 315–426 (2009)

    MathSciNet  MATH  Google Scholar 

  21. M. Discacciati, A. Quarteroni, A. Valli, Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (electronic) (2007)

    Google Scholar 

  22. E. Dubach, Contribution à la résolution des equations fluides en domaine non borné. Ph.D. thesis, Universitè Paris 13, 1993

    Google Scholar 

  23. A. Frati, F. Pasquarelli, A. Quarteroni, Spectral approximation to advection-diffusion problems by the fictitious interface method. J. Comput. Phys. 107(2), 201–211 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. M.J. Gander, L. Halpern, C. Japhet, Optimized Schwarz algorithms for coupling convection and convection-diffusion problems, in Domain Decomposition Methods in Science and Engineering (Lyon, 2000), Theory Eng. Appl. Comput. Methods, Internat. Center Numer. Methods Eng. (CIMNE, Barcelona, 2002), pp. 255–262.

    Google Scholar 

  25. M.J. Gander, L. Halpern, C. Japhet, V. Martin, Advection diffusion problems with pure advection approximation in subregions, in Domain Decomposition Methods in Science and Engineering XVI, Lecture Notes in Computer Science and Engineering, vol. 55 (Springer, Berlin, 2007), pp. 239–246

    Google Scholar 

  26. M.J. Gander, L. Halpern, C. Japhet, V. Martin, Viscous problems with a vanishing viscosity approximation in subregions: a new approach based on operator factorization, in Proceedings of ESAIM, vol. 27, 2009, pp. 272–288

    Google Scholar 

  27. P. Gervasio, J.-L. Lions, A. Quarteroni, Heterogeneous coupling by virtual control methods. Numer. Math. 90(2), 241–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Glowinski, J. Périaux, Q.V. Dinh, Domain decomposition methods for non linear problems in fluid dynamics. Technical Report RR-0147, INRIA, 07 1982

    Google Scholar 

  29. R. Glowinski, J. Périaux, G. Terrasson, On the coupling of viscous and inviscid models for compressible fluid flows via domain decomposition, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Houston, TX, 1989 (SIAM, Philadelphia, PA, 1990), pp. 64–97

    Google Scholar 

  30. F. Gastaldi, A. Quarteroni, On the coupling of hyperbolic and parabolic systems: analytical and numerical approach. Appl. Numer. Math. 6(1), 3–31 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Gastaldi, A. Quarteroni, G. Sacchi Landriani, On the coupling of two dimensional hyperbolic and elliptic equations: analytical and numerical approach, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations ed. by J. Périeaux, T.F.Chan, R.Glowinski, O.B.Widlund, (SIAM, Philadelphia, 1990), pp. 22–63

    Google Scholar 

  32. V. Girault, P.A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms (Springer, Berlin, 1986)

    Google Scholar 

  33. V. Girault, B. Rivière, DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. Technical Report TR-MATH 07-09, University of Pittsburgh, Department of Mathematics, 2007

    Google Scholar 

  34. G. Houzeaux, R. Codina, A Geometrical Domain Decomposition Method in Computational Fluid Dynamics, Monograph CIMNE, vol. 70 (International Center for Numerical Methods in Engineering (CIMNE), Barcelona, 2002)

    Google Scholar 

  35. G. Houzeaux, R. Codina, An iteration-by-subdomain overlapping Dirichlet/Robin domain decomposition method for advection-diffusion problems. J. Comput. Appl. Math. 158(2), 243–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Iafrati, E.F. Campana, A domain decomposition approach to compute wave breaking (wave-breaking flows). Int. J. Numer. Meth. Fluids 41, 419–445 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. W. Jäger and A. Mikelić, On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 403–465 (1996)

    MathSciNet  MATH  Google Scholar 

  38. W. Jäger, A. Mikelić, On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math., 60(4):1111–1127 (2000)

    MATH  Google Scholar 

  39. W. Jäger, A. Mikelić, N. Neuss, Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput., 22(6):2006–2028 (2001)

    Article  MATH  Google Scholar 

  40. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. (Springer, New York, 1971)

    Google Scholar 

  41. P.-L. Lions, On the Schwarz alternating method. I, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, Paris, 1987 (SIAM, Philadelphia, PA, 1988), pp. 1–42

    Google Scholar 

  42. P.L. Lions, On the Schwarz alternating method III: a variant for non-overlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations ed. by T.F. Chan et al., (SIAM, Philadelphia, 1990), pp. 202–231

    Google Scholar 

  43. J.L. Lions, E. Magenes, Problèmes aux Limites Non Homogènes et Applications, vol. 1 (Dunod, Paris, 1968)

    MATH  Google Scholar 

  44. J.-L. Lions, O. Pironneau, Algorithmes parallèles pour la solution de problèmes aux limites. C. R. Acad. Sci. Paris Sér. I Math. 327, 947–952 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. J.-L. Lions, O. Pironneau, Sur le contrôle parallèle des systèmes distribués. C. R. Acad. Sci. Paris Sér. I Math. 327, 993–998 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. J.-L. Lions, O. Pironneau, Domain decomposition methods for CAD. C. R. Acad. Sci. Paris Sér. I Math. 328, 73–80 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. W.L. Layton, F. Schieweck, I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Num. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. T.P. Mathew, Uniform convergence of the Schwarz alternating method for solving singularly perturbed advection-diffusion equations. SIAM J. Numer. Anal. 35(4), 1663–1683 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Maday, A.T. Patera, E.H. Rønquist, An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263–292 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  50. D. Peaceman, H. Rachford, The numerical solution of parabolic and elliptic differential equations. J. SIAM 3, 28–41 (1955)

    MathSciNet  MATH  Google Scholar 

  51. L.E. Payne, B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. Math. Pures Appl. 77, 317–354 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Quarteroni, Numerical Models for Differential Problems. Series MS&A. vol. 2 (Springer, Milan, 2009)

    Google Scholar 

  53. A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. (The Clarendon Press, Oxford University Press, New York, 1999)

    Google Scholar 

  54. B. Rivière, I. Yotov, Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. P.G. Saffman, On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)

    Google Scholar 

  56. H.A. Schwarz, Über einige abbildungsaufgaben. Ges. Math. Abh. 65–83 (1890)

    Google Scholar 

  57. J.S. Scroggs, A parallel algorithm for nonlinear convection-diffusion equations, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Houston, TX, 1989 (SIAM, Philadelphia, PA, 1990), pp. 373–384

    Google Scholar 

  58. K. Schenk and F.K. Hebeker, Coupling of two dimensional viscous and inviscid incompressible Stokes equtions. Technical Report Preprint 93-68 (SFB 359), Heidelberg University, 1993

    Google Scholar 

  59. R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983)

    Google Scholar 

  60. H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Discacciati .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Discacciati, M., Gervasio, P., Quarteroni, A. (2011). Heterogeneous Mathematical Models in Fluid Dynamics and Associated Solution Algorithms. In: Multiscale and Adaptivity: Modeling, Numerics and Applications. Lecture Notes in Mathematics(), vol 2040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24079-9_2

Download citation

Publish with us

Policies and ethics