Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2040))

  • 1544 Accesses

Abstract

Wavelet bases, initially introduced as a tool for signal and image processing, have rapidly obtained recognition in many different application fields. In this lecture notes we will describe some of the interesting properties that such functions display and we will illustrate how such properties (and in particular the simultaneous good localization of the basis functions in both space and frequency) allow to devise several adaptive solution strategies for partial differential equations.While some of such strategies are based mostly on heuristic arguments, for some other a complete rigorous justification and analysis of convergence and computational complexity is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bertoluzza, A posteriori error estimates for the wavelet Galerkin method. Appl. Math. Lett. 8, 1–6 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bertoluzza, Adaptive wavelet collocation method for the solution of Burgers equation. Transport Theor. Stat. Phys. 25, 339–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Bertoluzza, An adaptive wavelet collocation method based on interpolating wavelets, in Multiscale Wavelet Methods for Partial Differential Equations, ed. by W. Dahmen, A. Kurdila, P. Oswald (Academic Press, New York, 1997), pp. 109–135

    Google Scholar 

  4. S. Bertoluzza, L. Castro, Adaptive wavelet collocation for plane elasticity problems. I.M.A.T.I.-C.N.R. Report 26PV08/23/0 (2008)

    Google Scholar 

  5. S. Bertoluzza, G.Naldi, Some remarks on wavelet interpolation. Comput. Appl. Math. 13(1), 13–32 (1994)

    MathSciNet  MATH  Google Scholar 

  6. S. Bertoluzza, G. Naldi, A wavelet collocation method for the numerical solution of partial differential equations. Appl. Comput. Harmon. Anal. 3, 1–9 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bertoluzza, P. Pietra, Adaptive Wavelet Collocation for Nonlinear BVPs. Lecture Notes in Control and Information Science (Springer, London, 1996), pp. 168–174

    Google Scholar 

  8. S. Bertoluzza, M. Verani, Convergence of a non-linear wavelet algorithm for the solution of PDE’s. Appl. Math. Lett. 16(1), 113–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Bertoluzza, Y.Maday, J.C. Ravel, A dynamically adaptive wavelet method for solving partial differential equations. Comput. Meth. Appl. Mech. Eng. 116(14), 293299 (1994)

    MathSciNet  Google Scholar 

  10. S. Bertoluzza, C. Canuto, K. Urban, On the adaptive computation of integrals of wavelets. Appl. Numer. Math. 34, 13–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Bertoluzza, S. Mazet, M. Verani, A nonlinear Richardson algorithm for the solution of elliptic PDE’s. M3AS 13, 143–158 (2003)

    Google Scholar 

  12. C. Canuto, A. Tabacco, K. Urban, The wavelet element method. II. Realization and additional features in 2D and 3D. Appl. Comput. Harmon. Anal. 8, 123–165 (2000)

    Google Scholar 

  13. M. Chen, R. Temam, Incremental unknowns for solving partial differential equations. Numer. Math. 59, 255–271 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Christensen, An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis Series (Birkhuser, Basel, 2003)

    Google Scholar 

  15. A. Cohen, Numerical Analysis of Wavelet Methods (Elsevier, Amsterdam, 2003)

    Google Scholar 

  16. A. Cohen, R. Masson, Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition. Numer. Math. 86(2), 193–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods II: beyond the elliptic case. Found. Comput. Math. 2 (2002), 203–245 (1992)

    MathSciNet  Google Scholar 

  18. A. Cohen, I. Daubechies, J. Feauveau, Biorthogonal Bases of compactly supported Wavelets. Comm. Pure Appl. Math. 45, 485–560, (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Cohen, I. Daubechies, P. Vial, Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1, 54–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Cohen, W. Dahmen, R. DeVore, Multiscale decomposition on bounded domains. Trans. Am. Math. Soc. 352(8), 3651–3685 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliption operator equations—convergence rates. Math. Comput. 70, 27–75 (2000)

    Article  MathSciNet  Google Scholar 

  22. S. Dahlke, W. Dahmen, R. Hochmuth, R. Schneider, Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math. 23, 21–47 (1997), MR 98a:65075

    Google Scholar 

  23. W. Dahmen, Stability of multiscale transformations. J. Fourier Anal. Appl. 2(4), 341–361 (1996)

    MathSciNet  MATH  Google Scholar 

  24. W. Dahmen, C.A.Michelli, Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal. 30, 507–537 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Dahmen, R. Schneider, Wavelets with complementary boundary conditions—function spaces on the cube. Results Math. 34, 255–293 (1998)

    MathSciNet  MATH  Google Scholar 

  26. W. Dahmen, R. Schneider, Composite wavelet bases for operator equations. Math. Comput. 68(228), 1533–1567 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Dahmen, R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment monditions. SIAM J. Numer. Anal. 37(1), 319–352 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Dahmen, A. Kunoth, R. Schneider, Wavelet least square methods for boundary value problems. SIAM J. Numer. Anal. 39, 1985–2013, (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1992)

    Google Scholar 

  31. G. Deslaurier, S. Dubuc, Symmetric iterative interpolation processes. Constr. Approx. 5, 46–68 (1989)

    Google Scholar 

  32. R.A. DeVore, Nonlinear approximation. Acta Numer. 7, 51–150, (1998)

    MathSciNet  Google Scholar 

  33. D. Donoho, Interpolating wavelet transforms. Department of Statistics, Stanford University (1992) http://www-stat.stanford.edu/ donoho/Reports/1992/interpol.pdf

    Google Scholar 

  34. T. Gantumur, H. Harbrecht, R. Stevenson, An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76(258), 615–629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Hall, B. Jawerth, L. Andersson, G. Peters, Wavelets on closed subsets of the real line. Technical Report (1993)

    Google Scholar 

  36. N.K.-R. Kevlahan, O.V. Vasilyev, An adaptive wavelet collocation method for fluid–structure interaction. SIAM J. Sci. Comput. 26(6), 1894–1915 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. P.G. Lemaríe, Fonctions à support compact dans les analyses multi-r´esolutions. Rev. Mat. Iberoamericana 7(2), 157–182 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Maday, V. Perrier, J.C. Ravel, Adaptivit´e dynamique sur bases d’ondelettes pour l’approximation d’´equations aux deriv´ees partielles. C. R. Acad. Sci Paris 312(S´erie I), 405–410 (1991)

    Google Scholar 

  39. Y. Meyer, Wavelets and operators, in Different Perspectives on Wavelets, vol. 47, ed. by I. Daubechies. Proceedings of Symposia in Applied Mathematics, (American Mathematical Society, Providence, RI, 1993), pp. 35–58. From an American Math. Soc. short course, Jan. 11–12, 1993, San Antonio, TX

    Google Scholar 

  40. N. Saito, G. Beylkin, Multiresolution representation using the autocorrelation functions of compactly supported wavelets. IEEE Trans. Signal Process. 41, 3584–3590 (1993)

    Article  MATH  Google Scholar 

  41. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North Holland, Amsterdam, 1978)

    Google Scholar 

  42. O.V. Vasilyev, S.Paolucci, A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain. J. Comput. Phys. 125, 498–512 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. O.V. Vasilyev, Y.Y. Podladchikov, D.A. Yuen, Modeling of compaction driven flow in poroviscoelastic medium using adaptive wavelet collocation method. Geophys. Res. Lett. 25(17), 3239–3242 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Bertoluzza .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bertoluzza, S. (2011). Adaptive Wavelet Methods. In: Multiscale and Adaptivity: Modeling, Numerics and Applications. Lecture Notes in Mathematics(), vol 2040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24079-9_1

Download citation

Publish with us

Policies and ethics