Skip to main content

A Hybrid Approach to Estimate True Density Function for Gene Expression Data

  • Conference paper
Advances in Digital Image Processing and Information Technology (DPPR 2011)

Abstract

Accurate classification of diseases from microarray gene expression profile is a challenging task because of its high dimensional low sample data. Most of the gene selection methods discretize the continuous-valued gene expression data for estimating the marginal and joint probabilities that results in inherent error during discretization and reduces the classification accuracy. To overcome this difficulty, a hybrid fuzzy-rough set approach is proposed that generates a fuzzy equivalence class and constructs a fuzzy equivalence partition matrix to estimate the true density function for the continuous-valued gene expression data without discretization. The performance of the proposed approach is evaluated using six gene expression data. f-Information measure is used for gene selection and back propagation network is used for classification. Simulation results show that the proposed method estimate the true density function correctly without discretizing the continuous gene expression values. Further the proposed approach performs the integration required to computef-Information measure easily and results in highly informative genes that produces good classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simon, R.M., Korn, E.L., McShane, L.M., Radmacher, M.D., Wright, G.W., Zhao, Y.: Design and Analysis of DNA Microarray Investigations. Springer, Berlin (2003)

    MATH  Google Scholar 

  2. Golub, T.R., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Dowing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Google Scholar 

  3. Hastie, T., Tibshirani, R., Eisen, M.B., Alizadeh, A., Levy, R., Chan, W.C., Bostein, W.C.D., Brown, P.O.: Gene Shaving as a method for identifying distinct set of genes with similar expression patterns. Genome Biology 1(2) (2000)

    Google Scholar 

  4. Ding, Peng, H.: Minimum Redundancy Feature selection from microarray gene expression data. J. Bioinformatics Comput. Biol. 3(2), 185–205 (2005)

    Article  MathSciNet  Google Scholar 

  5. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  6. Liu, X., Krishnan, A., Mondry, A.: An Entropy-based gene selection method for cancer classification using microarray data. BMC Bioinformatics 6(76), 1–14 (2005)

    Google Scholar 

  7. Maji, P.: f-Information Measures for Efficient Selection of Discriminative Genes From Microarray Data. IEEE Trans. Biomed. Eng. 56(4), 1063–1069 (2009)

    Article  MathSciNet  Google Scholar 

  8. Kwak, N., Choi, C.-H.: Input Feature Selection by Mutual Information Based on Parzen Window. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1667–1671 (2002)

    Article  Google Scholar 

  9. Maji, P., Pal, S.K.: Rough set based generalised fuzzy C-means algorithm and quantitative indices. IEEE Trans. Syst., Man, Cybern. B, Cybern. 37(6), 1529–1540 (2007)

    Article  Google Scholar 

  10. Shi, C., Chen, L.: Feature dimension reduction for microarray data analysis using locally linear embedding. In: APBC, pp. 211–217 (2005)

    Google Scholar 

  11. Umpai, T.J., Aitken, S.: Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes. Bioinformatics 6, 168–174 (2005)

    Google Scholar 

  12. Devaraj, D., Preetha Roseylyn, J., Umar Rani, R.: Artificial Neural model for voltage security based contingency ranking. Int. J. on Applied Soft Computing 7(3), 722–727 (2007)

    Article  Google Scholar 

  13. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  14. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. U.S.A 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  15. van der Pouw Kraan, T.C.T.M., van Gaalen, F.A., Kasperkovitz, P.V., Verbeet, N.L., Smeets, T.J.M., Kraan, M.C., Fero, M., Tak, P.-P., Huizinga, T.W.J., Pieterman, E., Breedveld, F.C., Breedveld, A.A., Alizadech, A.A., Verweij, C.L.: Rheumatoid arthritis is a heterogenous disease: Evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum. 48(8), 2132–2145 (2003)

    Article  Google Scholar 

  16. Alizadeh, A., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(4), 503–511 (2000)

    Article  Google Scholar 

  17. van der Pouw Kraan, T.C.T.M., Wijbrands, C.A., van Baarsen, L.G.M., Voskuyl, A.E., Rustenburg, F., Baggen, J.M., Ibrahim, S.M., Fero, M., Dijkmans, B.A.C., Talk, P.P., Verweji, C.L.: Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: Assignment of a type I interferon signature in a subpopulation of patients. Ann. Rheum. Dis. 66(8), 1008–1014 (2007)

    Article  Google Scholar 

  18. Welsh, J.B., Sapinoso, L.M., Su, A.I., Kern, S.G., Wang-Rodriguez, J., Moskaluk, C.A.: Analysis of gene expression identifies candidate markers and pharmacological targets in prostate Cancer. Cancer Res. 61, 5974–5978 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pugalendhi, G.K., David, M., Victoire, A.A. (2011). A Hybrid Approach to Estimate True Density Function for Gene Expression Data. In: Nagamalai, D., Renault, E., Dhanuskodi, M. (eds) Advances in Digital Image Processing and Information Technology. DPPR 2011. Communications in Computer and Information Science, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24055-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24055-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24054-6

  • Online ISBN: 978-3-642-24055-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics