Skip to main content

EM-Type Algorithms for Image Reconstruction with Background Emission and Poisson Noise

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6938))

Included in the following conference series:

Abstract

Obtaining high quality images is very important in many areas of applied sciences. In this paper, we proposed general robust expectation maximization (EM)-Type algorithms for image reconstruction when the measured data is corrupted by Poisson noise. This method is separated into two steps: EM and regularization. In order to overcome the contrast reduction introduced by some regularizations, we suggested EM-Type algorithms with Bregman iteration by applying a sequence of modified EM-Type algorithms. The numerical experiments show the effectiveness of these methods in different applications.

This work was supported by the Center for Domain-Specific Computing (CDSC) under the NSF Expeditions in Computing Award CCF-0926127.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shepp, L., Logan, B.: The Fourier reconstruction of a head section. IEEE Transaction on Nuclear Science 21, 21–34 (1974)

    Article  Google Scholar 

  2. Kak, A., Slaney, M.: Principles of Computerized Tomographic Imaging. Society of Industrial and Applied Mathematics, Philadelphia (2001)

    Book  MATH  Google Scholar 

  3. Brune, C., Sawatzky, A., Wubbeling, F., Kosters, T., Burger, M.: An analytical view on EM-TV based methods for inverse problems with Poisson noise. Preprint, University of Münster (2009)

    Google Scholar 

  4. Politte, D.G., Snyder, D.L.: Corrections for accidental coincidences and attenuation in maximum-likelihood image reconstruction for positron-emission tomography. IEEE Transaction on Medical Imaging 10, 82–89 (1991)

    Article  Google Scholar 

  5. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  6. Grenander, U.: Tutorial in pattern theory. Lecture Notes Volume, Division of Applied Mathematics. Brown University (1984)

    Google Scholar 

  7. Conchello, J.A., McNally, J.G.: Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy. In: Proceeding of SPIE Symposium on Electronic Imaging Science and Technology, vol. 2655, pp. 199–208 (1996)

    Google Scholar 

  8. Markham, J., Conchello, J.A.: Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy. Journal of the Optical Society America A 18, 1052–1071 (2001)

    Article  Google Scholar 

  9. Zhu, D., Razaz, M., Lee, R.: Adaptive penalty likelihood for reconstruction of multi-dimensional confocal microscopy images. Computerized Medical Imaging and Graphics 29, 319–331 (2005)

    Article  Google Scholar 

  10. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dey, N., Blanc-Feraud, L., Zimmer, C., Roux, P., Kam, Z., Olivo-Marin, J.C., Zerubia, J.: Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microscopy Research and Technique 69, 260–266 (2006)

    Article  Google Scholar 

  12. Yan, M., Vese, L.A.: Expectation maximization and total variation based model for computed tomography reconstruction from undersampled data. In: Proceeding of SPIE Medical Imaging: Physics of Medical Imaging, vol. 7961, p. 79612X (2011)

    Google Scholar 

  13. Joshi, S., Miller, M.I.: Maximum a posteriori estimation with Good’s roughness for optical sectioning microscopy. Journal of the Optical Society of America A 10, 1078–1085 (1993)

    Article  Google Scholar 

  14. Shepp, L., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Transaction on Medical Imaging 1, 113–122 (1982)

    Article  Google Scholar 

  15. Richardson, W.H.: Bayesian-based iterative method of image restoration. Journal of the Optical Society America 62, 55–59 (1972)

    Article  Google Scholar 

  16. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astronomical Journal 79, 745–754 (1974)

    Article  Google Scholar 

  17. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Hurwitz, H.: Entropy reduction in Bayesian analysis of measurements. Physics Review A 12, 698–706 (1975)

    Article  Google Scholar 

  19. Levitan, E., Herman, G.T.: A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Transactions on Medial Imaging 6, 185–192 (1987)

    Article  Google Scholar 

  20. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  21. Meyer, Y.: Oscillating Patterns in Image Processing and in some Nonlinear Evolution Equations. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  22. Bregman, L.: The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7, 200–217 (1967)

    Article  MathSciNet  Google Scholar 

  23. Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressed sensing and sparse denoising. Communications in Mathematical Sciences 8, 93–111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1- minimization with applications to compressed sensing. Journal on Imaging Sciences 1, 143–168 (2008)

    Article  MATH  Google Scholar 

  25. Coskun, A.F., Sencan, I., Su, T.W., Ozcan, A.: Lensless wide field fluorescent imaging on a chip using compressive decoding of sparse objects. Optics Express 18, 10510–10523 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, M. (2011). EM-Type Algorithms for Image Reconstruction with Background Emission and Poisson Noise. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24028-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24028-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24027-0

  • Online ISBN: 978-3-642-24028-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics