Skip to main content

A Partition-Based First-Order Probabilistic Logic to Represent Interactive Beliefs

  • Conference paper
Scalable Uncertainty Management (SUM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6929))

Included in the following conference series:

  • 626 Accesses

Abstract

Being able to compactly represent large state spaces is crucial in solving a vast majority of practical stochastic planning problems. This requirement is even more stringent in the context of multi-agent systems, in which the world to be modeled also includes the mental state of other agents. This leads to a hierarchy of beliefs that results in a continuous, unbounded set of possible interactive states, as in the case of Interactive POMDPs. In this paper, we describe a novel representation for interactive belief hierarchies that combines first-order logic and probability. The semantics of this new formalism is based on recursively partitioning the belief space at each level of the hierarchy; in particular, the partitions of the belief simplex at one level constitute the vertices of the simplex at the next higher level. Since in general a set of probabilistic statements only partially specifies a probability distribution over the space of interest, we adopt the maximum entropy principle in order to convert it to a full specification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumann, R.J.: Interactive epistemology II: Probability. International Journal of Game Theory 28(3), 301–314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacchus, F.: Representing and reasoning with probabilistic knowledge: a logical approach to probabilities. MIT Press, Cambridge (1990)

    Google Scholar 

  3. Boutilier, C., Poole, D.: Computing optimal policies for partially observable decision processes using compact representations. In: Proceedings of the National Conference on Artificial Intelligence, pp.1168–1175 (1996)

    Google Scholar 

  4. Boutilier, C., Reiter, R., Price, B.: Symbolic Dynamic Programming for First-Order MDPs. In: IJCAI 2001, pp. 690–700. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  5. Doshi, P., Gmytrasiewicz, P.J.: Monte Carlo sampling methods for approximating interactive POMDPs. J. Artif. Int. Res. 34, 297–337 (2009)

    MATH  Google Scholar 

  6. Doshi, P., Perez, D.: Generalized point based value iteration for interactive POMDPs. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 1, pp. 63–68. AAAI Press, Menlo Park (2008)

    Google Scholar 

  7. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41, 340–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gmytrasiewicz, P.J., Doshi, P.: A framework for sequential planning in multi-agent settings. Journal of Artificial Intelligence Research 24, 24–49 (2005)

    MATH  Google Scholar 

  9. Halpern, J.Y.: An analysis of first-order logics of probability. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1375–1381. Morgan Kaufmann Publishers Inc., San Francisco (1989)

    Google Scholar 

  10. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  11. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. J. ACM 37, 549–587 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harsanyi, J.C.: Games with Incomplete Information Played by “Bayesian” Players, I-III. Part I. The Basic Model. Management Science 14(3), 159–182 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaynes, E.T.: Information Theory and Statistical Mechanics. Physical Review Online Archive (Prola) 106(4), 620–630 (1957)

    MathSciNet  MATH  Google Scholar 

  14. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational probabilistic conditionals. In: Proceedings of the 12th International Conference on the Principles of Knowledge Representation and Reasoning (2010)

    Google Scholar 

  15. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI), pp. 580–587 (1998)

    Google Scholar 

  16. Lukasiewicz, T., Kern-Isberner, G.: Probabilistic logic programming under maximum entropy. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 279–292. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: Blog: Probabilistic models with unknown objects. In: Probabilistic, Logical and Relational Learning (2005)

    Google Scholar 

  18. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–88 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Poupart, P.: Exploiting structure to efficiently solve large scale Partially Observable Markov Decision Processes. Ph.D. thesis, University of Toronto, Toronto, Ont., Canada (2005), aAINR02727

    Google Scholar 

  20. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136 (2006)

    Article  Google Scholar 

  21. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson Education, London (2010)

    MATH  Google Scholar 

  22. Sanner, S., Boutilier, C.: Practical solution techniques for first-order MDPs. Artif. Intell. 173, 748–788 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sanner, S., Kersting, K.: Symbolic dynamic programming for first-order POMDPs. In: AAAI 2010, pp. 1140–1146 (2010)

    Google Scholar 

  24. Shirazi, A., Amir, E.: Factored models for probabilistic modal logic. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 1, pp. 541–547. AAAI Press, Menlo Park (2008)

    Google Scholar 

  25. Wang, C., Joshi, S., Khardon, R.: First order decision diagrams for relational MDPs. J. Artif. Int. Res. 31, 431–472 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Wang, C., Khardon, R.: Relational partially observable MDPs. In: AAAI 2010, pp. 1153–1157 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panella, A., Gmytrasiewicz, P. (2011). A Partition-Based First-Order Probabilistic Logic to Represent Interactive Beliefs. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23963-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23962-5

  • Online ISBN: 978-3-642-23963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics