Skip to main content

Quenched Lyapunov Exponent for the Parabolic Anderson Model in a Dynamic Random Environment

  • Conference paper
  • First Online:
Probability in Complex Physical Systems

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 11))

Abstract

We continue our study of the parabolic Anderson equation ∂u∂t = κΔu + γξu for the space–time field \(u: \,{\mathbb{Z}}^{d} \times [0,\infty ) \rightarrow \mathbb{R}\), where κ ∈ [0, ) is the diffusion constant, Δ is the discrete Laplacian, γ ∈ (0, ) is the coupling constant, and \(\xi : \,{\mathbb{Z}}^{d} \times [0,\infty ) \rightarrow \mathbb{R}\) is a space–time random environment that drives the equation. The solution of this equation describes the evolution of a “reactant” u under the influence of a “catalyst” ξ, both living on \({\mathbb{Z}}^{d}\).

In earlier work we considered three choices for ξ: independent simple random walks, the symmetric exclusion process, and the symmetric voter model, all in equilibrium at a given density. We analyzed the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of u w.r.t. ξ, and showed that these exponents display an interesting dependence on the diffusion constant κ, with qualitatively different behavior in different dimensions d. In the present paper we focus on the quenched Lyapunov exponent, i.e., the exponential growth rate of u conditional on ξ.

We first prove existence and derive qualitative properties of the quenched Lyapunov exponent for a general ξ that is stationary and ergodic under translations in space and time and satisfies certain noisiness conditions. After that we focus on the three particular choices for ξ mentioned above and derive some further properties. We close by formulating open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger, Q., Toninelli, F.L.: On the critical point of the random walk pinning model in dimension d = 3. Electronic J. Probab. 15, 654–683 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Birkner, M., Greven, A., den Hollander, F.: Collision local time of transient random walks and intermediate phases in interacting stochastic systems. Electronic J. Probab. 16, 552–586 (2011)

    MATH  Google Scholar 

  3. Birkner, M., Sun, R.: Annealed vs quenched critical points for a random walk pinning model. Ann. Inst. H. Poincaré Probab. Statist. 46, 414–441 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birkner, M., Sun, R.: Disorder relevance for the random walk pinning model in dimension 3. Ann. Inst. H. Poincaré Probab. Statist. 47, 259–293 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carmona, R.A., Koralov, L., Molchanov, S.A.: Asymptotics for the almost-sure Lyapunov exponent for the solution of the parabolic Anderson problem. Random Oper. Stochastic Equat. 9, 77–86 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Carmona, R.A., Molchanov, S.A.: Parabolic Anderson Problem and Intermittency. AMS Memoir 518, American Mathematical Society, Providence RI (1994).

    Google Scholar 

  7. Carmona, R.A., Molchanov, S.A., Viens, F.: Sharp upper bound on the almost-sure exponential behavior of a stochastic partial differential equation. Random Oper. Stochastic Equat. 4, 43–49 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Castell, F., Gün, O., Maillard, G.: Parabolic Anderson model with a finite number of moving catalysts. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M.-K., Scheutzow, M., Schmock, U., (eds.), Probability in Complex Physical Systems, Vol. 11, pp. 91–117. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Cranston, M., Mountford, T.S., Shiga, T.: Lyapunov exponents for the parabolic Anderson model. Acta Math. Univ. Comeniane 71, 163–188 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Cranston, M., Mountford, T.S., Shiga, T.: Lyapunov exponents for the parabolic Anderson model with Lévy noise. Probab. Theory Relat. Fields 132, 321–355 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drewitz, A., Gärtner, J., Ramírez, A., Sun, R.: Survival probability of a random walk among a Poisson system of moving traps. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M.-K., Scheutzow, M., Schmock, U., (eds.), Probability in Complex physical systems, Vol. 11, pp. 119–158. Springer, Heldelberg (2012)

    Chapter  Google Scholar 

  12. Gärtner, J., Heydenreich, M.: Annealed asymptotics for the parabolic Anderson model with a moving catalyst. Stoch. Proc. Appl. 116, 1511–1529 (2006)

    Article  MATH  Google Scholar 

  13. Gärtner, J., den Hollander, F.: Intermittency in a catalytic random medium. Ann. Probab. 34, 2219–2287 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gärtner, J., den Hollander, F., Maillard, G.: Intermittency on catalysts: symmetric exclusion. Electronic J. Probab. 12, 516–573 (2007)

    MATH  Google Scholar 

  15. Gärtner, J., den Hollander, F., Maillard, G.: Intermittency on catalysts. In: Blath, J., Mörters, P., Scheutzow, M. (eds.) Trends in Stochastic Analysis. London Mathematical Society Lecture Note Series 353, pp. 235–248. Cambridge University Press, Cambridge (2009)

    Chapter  Google Scholar 

  16. Gärtner, J., den Hollander, F., Maillard, G.: Intermittency on catalysts: Three-dimensional simple symmetric exclusion. Electr. J. Prob. 72, 2091–2129 (2009)

    Google Scholar 

  17. Gärtner, J., den Hollander, F., Maillard, G.: Intermittency on catalysts: Voter model. Ann. Probab. 38, 2066–2102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Greven, A., den Hollander, F.: Phase transition for the long-time behavior of interacting diffusions. Ann. Probab. 35, 1250–1306 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kesten, H., Sidoravicius, V.: Branching random walk with catalysts. Electr. J. Prob. 8, 1–51 (2003)

    MathSciNet  Google Scholar 

  20. Kim, H.-Y., Viens, F., Vizcarra, A.: Lyapunov exponents for stochastic Anderson models with non-gaussian noise. Stoch. Dyn. 8, 451–473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kingman, J.F.C.: Subadditive processes. In: Lecture Notes in Mathematics 539, pp. 167–223. Springer, Berlin (1976)

    Google Scholar 

  22. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 320, Springer, Berlin (1999)

    Google Scholar 

  23. Liggett, T.M.: Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276, Springer, New York (1985)

    Google Scholar 

  24. Maillard, G., Mountford, T., Schöpfer, S.: Parabolic Anderson model with voter catalysts: dichotomy in the behavior of Lyapunov exponents. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M.-K., Scheutzow, M., Schmock, U., (eds.), Probability in Complex physical systems, Vol. 11, pp. 33–68. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Schnitzler, A., Wolff, T.: Precise asymptotics for the parabolic Anderson model with a moving catalyst or trap. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M.-K., Scheutzow, M., Schmock, U., (eds.), Probability in Complex physical systems, Vol. 11, pp. 69–89. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Spitzer, F.: Principles of Random Walk. Van Nostrand, Princeton (1964)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

GM is grateful to CNRS for financial support and to EURANDOM for hospitality. We thank Dirk Erhard for his comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Maillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gärtner, J., den Hollander, F., Maillard, G. (2012). Quenched Lyapunov Exponent for the Parabolic Anderson Model in a Dynamic Random Environment. In: Deuschel, JD., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds) Probability in Complex Physical Systems. Springer Proceedings in Mathematics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23811-6_7

Download citation

Publish with us

Policies and ethics