Skip to main content

Polyurethane Biodegradation

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Polyurethanes represent a class of polymers that have found a widespread use in the medical, automotive and industrial fields. Polyurethanes can be found in products such as furniture, coatings, adhesives, constructional materials, fibers, paddings, paints, elastomers and synthetic skins. Polyurethane is abbreviated as PUR in compliance with official German and International standards. However, the abbreviation PU is more commonly used in English texts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn JH, Pan JG, Rhee JS (1999) Identification of the tliDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. J Bacteriol 181:1847–1852

    CAS  Google Scholar 

  • Akatsuka H, Kawai E, Omori K, Shibatani T (1995) The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide. J Bacteriol 177:6381–6389

    CAS  Google Scholar 

  • Akutsu Y, Nakajima-Kambe T, Nomura N, Nakahara T (1998) Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl Environ Microbiol 64:62–67

    CAS  Google Scholar 

  • Allen A, Hilliard N, Howard GT (1999) Purification and characterization of a soluble polyurethane degrading enzyme from Comamonos acidovorans. Int Biodeter Biodegrad 43:37–41

    Article  CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  Google Scholar 

  • Baumgartner JN, Yang CZ, Cooper SL (1997) Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes. Biomaterials 18:831–837

    Article  CAS  Google Scholar 

  • Bayer O (1947) Polyurethanes. Mod Plast 24:149–152

    CAS  Google Scholar 

  • Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552–559

    CAS  Google Scholar 

  • Blake RC, Howard GT (1998) Adhesion and growth of a Bacillus sp on a polyesterurethane. Int Biodeter Biodegrad 42:63–73

    Article  CAS  Google Scholar 

  • Boubendir A (1993) Purification and biochemical evaluation of polyurethane degrading enzymes of fungal origin. Diss Abstr Int 53:4632

    Google Scholar 

  • Cosgrove L, McGeechan PL, Robson GD, Handley PS (2007) Fungal communities associated with degradation of polyester polyurethane in soil. Appl Environ Microbiol 73:5817–5824

    Article  CAS  Google Scholar 

  • Cosgrove L, McGeechan PL, Handley PS, Robson GD (2010) Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl Environ Microbiol 76:810–819

    Article  CAS  Google Scholar 

  • Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW (1994) Biodegradation of a collodial ester-based polyurethane by soil fungi. Int Biodeter Biodegrad 33:103–113

    Article  Google Scholar 

  • Darby RT, Kaplan AM (1968) Fungal susceptibility of polyurethanes. Appl Microbiol 16:900–905

    CAS  Google Scholar 

  • Dombrow BA (1957) Polyurethanes. Reinhold Publishing Corporation, New York

    Google Scholar 

  • Doung F, Soscia C, Lazdunski A, Marjier M (1994) The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system. Mol Microbiol 11:1117–1126

    Article  Google Scholar 

  • Evans DM, Levisohn I (1968) Biodeterioration of polyester-based polyurethane. Int Biodeter Bull 4:89–92

    CAS  Google Scholar 

  • Flilip Z (1978) Decomposition of polyurethane in a garabage landfill leakage water and by soil microorganisms. Eur J Appl Microbiol Biotechnol 5:225–231

    Article  Google Scholar 

  • Fried JR (1995) Polymer Science and Technology. Prentice Hall PTR, Englewood Cliffs

    Google Scholar 

  • Fukui T, Narikawa T, Miwa K, Shirakura Y, Saito T, Tomita K (1988) Effect of limited trypic modifications of a bacterial poly(3-hydroxybutyrate) depolymerase on its catalytic activity. Biochimica Biophysica ACTA 952:164–171

    Article  CAS  Google Scholar 

  • Gautam R, Bassi AS, Yanful EK, Cullen E (2007) Biodegradation of automotive waste polyester polyurethane foam using Pseudomonas chlororaphis ATCC55729. Int Biodeter Biodegrad 60:245–249

    Article  CAS  Google Scholar 

  • Griffin GJL (1980) Synthetic polymers and the living environment. Pure Appl Chem 52:389–407

    Article  Google Scholar 

  • Halim El-Sayed AHMM, Mahmoud WM, Davis EM, Coughlin RW (1996) Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria. Int Biodeter Biodegrad 37:69–79

    Article  Google Scholar 

  • Hansen CK (1992) Fibronectin type III-like sequences and a new domain type in prokaryotic depolymerases with insoluble substrates. FEBS Lett 305:91–96

    Article  CAS  Google Scholar 

  • Hole LG (1972) Artificial leathers. Rep Prog Appl Chem 57:181–206

    CAS  Google Scholar 

  • Howard GT, Blake RC (1999) Growth of Pseudomonas fluorescens on a polyester-polyurethane and the purification and characterization of a polyurethanase-protease enzyme. Int Biodeter Biodegrad 42:213–220

    Article  Google Scholar 

  • Howard GT, Crother B, Vicknair J (2001) Cloning, nucleotide sequencing and characterization of a polyurethanase gene (pueB) from Pseudomonas chlororaphis. Int Biodeter Biodegrad 47:141–149

    Article  CAS  Google Scholar 

  • Howard GT, Mackie RI, Cann IKO, Ohene-Adjei S, Aboudehen KS, Duos BG, Childers GW (2007) Effect of insertional mutations in the pueA and pueB genes encoding two polyurethanases in Pseudomonas chlororaphis contained within a gene cluster. J Appl Microbiol 103:2074–2083

    Article  CAS  Google Scholar 

  • Huang SJ, Roby MS (1986) Biodegradable polymers poly(amide-urethanes). J Bioact Compat Polym 1:61–71

    Article  CAS  Google Scholar 

  • Huang SJ, Macri C, Roby M, Benedict C, Cameron JA (1981) Biodegradation of polyurethanes derived from polycaprolactonediols. In: Edwards KN (ed) Urethane chemistry and applications. American Chemical Society, Washington, DC, pp 471–487

    Chapter  Google Scholar 

  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, Van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  CAS  Google Scholar 

  • Kanavel GA, Koons PA, Lauer RE (1966) Fungus resistance of millable urethanes. Rubber World 154:80–86

    Google Scholar 

  • Kaplan AM, Darby RT, Greenberger M, Rodgers MR (1968) Microbial deterioration of polyurethane systems. Dev Ind Microbiol 82:362–371

    Google Scholar 

  • Kawai F (1995) Breakdown of plastics and polymers by microorganisms. Adv Biochem Eng/Biotech 52:151–194

    CAS  Google Scholar 

  • Kawai E, Akatsuka H, Idei A, Shibatani T, Omori K (1998) Serratia marcescens S-layer protein is secreted extracellularly via an ATP-binding cassette exporter, the Lip system. Mol Microbiol 27:941–952

    Article  CAS  Google Scholar 

  • Kawai E, Idei A, Kumura H, Shimazaki K, Akaksuka H, Omori K (1999) The ABC-exporter genes involved in the lipase secretion are clustered with the genes for lipase, alkaline protease and serine protease homologous in Pseudomonas fluorescens no. 33. Biochim Biophys Acta 1446(3):377–382

    Article  CAS  Google Scholar 

  • Kay MJ, Morton LHG, Prince EL (1991) Bacterial degradation of polyester polyurethane. Int Biodeter Bull 27:205–222

    Article  CAS  Google Scholar 

  • Kay MJ, McCabe RW, Morton LHG (1993) Chemical and physical changes occurring in polester polyurethane during biodegradation. Int Biodeter Biodegrad 31:209–225

    Article  CAS  Google Scholar 

  • Knowles J, Lehtovaara P, Teeri T (1987) Cellulase familes and their genes. Trends Biotechnol 5:255–261

    Article  CAS  Google Scholar 

  • Labrow RS, Erfle DJ, Santerre JP (1996) Elastase-induced hydrolysis of synthetic solid substrates: poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomaterials 17:2381–2388

    Article  Google Scholar 

  • Langsford ML, Gilkes NR, Sing S, Moser B, Miller RC Jr, Warren RAJ, Kilburn DG (1987) Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett 225:163–167

    Article  CAS  Google Scholar 

  • Marchant RE (1992) Biodegradability of biomedical polymers. In: Hamid SH, Amin MB, Maadhah AG (eds) Handbook of polymer degradation. Marcel Dekker, Inc, New York, pp 617–631

    Google Scholar 

  • Marchant RE, Zhao Q, Anderson JM, Hiltner A (1987) Degradation of a poly(ether urethane urea) elastomer: infra-red and XPS studies. Polymer 28:2032–2039

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Onuma F, Kimpara N, Nakahara T (1995) Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiol Lett 129:39–42

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Onuma F, Akutsu Y, Nakahara T (1997) Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans steain TB-35. J Ferment Bioeng 83:456–460

    Article  CAS  Google Scholar 

  • Ossefort ZT, Testroet FB (1966) Hydrolytic stability of urethane elastomers. Rubber Chem Technol 39:1308–1327

    Article  CAS  Google Scholar 

  • Pathirana RA, Seal KJ (1983) Gliocladium roseum (Bainier), a potential biodeteriogen of polyester polyurethane elastomers. Biodeterioration 5:679–689

    Google Scholar 

  • Persson B, Bentsson-Olivecrona G, Enerback S, Olivecrona T, Jornvall H (1989) Structure features of lipoprotein lipase: lipase family relationships, binding interactions, non-equivalence of lipase cofactors, vitellogenin similarities and functional subdivision of lipoprotein lipase. Eur J Biochem 179:39–45

    Article  CAS  Google Scholar 

  • Phua SK, Castillo E, Anderson JM, Hiltner A (1987) Biodegradation of a polyurethane in vitro. J Biomed Mater Res 21:231–246

    Article  CAS  Google Scholar 

  • Rowe L, Howard GT (2002) Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int Biodeter Biodegrad 50:33–40

    Article  CAS  Google Scholar 

  • Ruiz C, Hilliard N, Howard GT (1999a) Growth of Pseudomonas chlororaphis on a polyester-polyurethane and the purification and characterization of a polyurethanse-esterase enzyme. Int Biodeter Biodegrad 43:7–12

    Article  Google Scholar 

  • Ruiz C, Main T, Hilliard N, Howard GT (1999b) Purification and characterization of two polyurethanse enzymes from Pseudomonas chlororaphis. Int Biodeter Biodegrad 43:43–47

    Article  CAS  Google Scholar 

  • Santerre JP, Labrow RS (1997) The effect of hard segment size on the hydrolytic stability of polyether-urea-urethanes when exposed to cholesterol esterase. J Biomed Mater Res 36:223–232

    Article  CAS  Google Scholar 

  • Santerre JP, Labrow RS, Adams GA (1993) Enzyme-biomaterial interactions: effect of biosystem on degradation of polyurethanes. J Biomed Mater Res 27:97–109

    Article  CAS  Google Scholar 

  • Santerre JP, Labow RS, Duguat DG, Erfle D, Adams GA (1994) Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. J Biomed Mater Res 28:1187–1199

    Article  CAS  Google Scholar 

  • Saunders JH, Frisch KC (1964) Polyurethanes: chemistry and technology, part II: technology. Interscience Publishers, New York

    Google Scholar 

  • Schnabel W (1981) Polymer degradation: principles and potential applications. Macmillan Publishing Co. Inc, New York, pp 178–215

    Google Scholar 

  • Shinomiya M, Iwata T, Kasuya K, Doi Y (1997) Cloning of the gene for poly(3-hydroxybutyric acid) depolymerase of Comamonas testosteroni and functional analysis of its substrate-binding domain. FEMS Microbiol Lett 154:89–94

    Article  CAS  Google Scholar 

  • Stern RS, Howard GT (2000) The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiol Lett 185:163–168

    Article  CAS  Google Scholar 

  • Tang YW, Santerre JP, Labrow RR, Taylor DG (1997) Application of macromolecular additives to reduce the hydrolytic degradation of polyurethanes by lysosomal enzymes. Biomaterials 18:37–45

    Article  Google Scholar 

  • Uhlig K (1999) Discovering polyurethanes. Hanser Publisher, Munich

    Google Scholar 

  • Ulrich H (1983) Polyurethane. In: Modern plastics encyclopedia, vol 60. McGraw-Hill, New York, pp 76–84

    Google Scholar 

  • Urbanski J, Czerwinski W, Janicka K, Majewska F, Zowall H (1977) Handbook of analysis of synthetic polymers and plastics. Ellis Horwood Limited, Chichester

    Google Scholar 

  • Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhahai R, Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett 204:223–227

    Article  Google Scholar 

  • Vega R, Main T, Howard GT (1999) Cloning and expression in Escherichia coli of a polyurethane-degrading enzyme from Pseudomonas fluorescens. Int Biodeter Biodegrad 43:49–55

    Article  CAS  Google Scholar 

  • Wales DS, Sagar BR (1988) Mechanistic aspects of polyurethane biodeterioration. In: Houghton DR, Smith RN, Eggins HOW (eds) Biodeterioration, 7th edn. Elsevier Applied Science, London, pp 351–358

    Google Scholar 

  • Winkler FK, D’Arcy A, Hunzinger W (1990) Structure of human pancreatic lipase. Nature 343:7–13

    Article  Google Scholar 

  • Young RJ, Lovell PA (1994) Introduction to polymers’, 2nd edn. Chapman & Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary T. Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Howard, G.T. (2012). Polyurethane Biodegradation. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_14

Download citation

Publish with us

Policies and ethics