Skip to main content

Wind Turbine Tribology

  • Chapter
  • First Online:
Green Tribology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Wind power is of increasing interest in society due to its prospects as an environmentally friendly source of renewable energy. The use of wind turbines to extract electrical energy from wind can be dated back to the late-1800s, with the 12 kW windmill generator by Charles Brush, as well as the mid-1900s, with the 1250 kW Smith-Putnam wind turbine. Developments in the wind industry were encouraged by the oil crisis in 1973.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.C. Babu, K.B. Mohanty, Doubly-fed induction generator for variable speed wind energy conversion systems–modeling and simulation. Int. J. Comput. Electr. Eng. 2(1), 141–147 (2010)

    Google Scholar 

  2. H. Chandler (ed.), Wind Energy–The Facts, in European Wind Energy Association (2003)

    Google Scholar 

  3. Y. Amirat, M.E.H. Benbouzid, B. Bensaker, R. Wamkeue, Condition Monitoring and ault Diagnosis in Wind Energy Conversion Systems: A Review in Electric Machines and Drives Conference. IEMDC ‘07, IEEE International, 2007

    Google Scholar 

  4. Global Wind 2009 Report, Global Wind Energy Council, 2010

    Google Scholar 

  5. 20% Wind Energy by 2030, U.S. Department of Energy Technical Report, 2008

    Google Scholar 

  6. Strategic research agenda: market deployment strategy from 2008 to 2030, European Wind Energy Technology Platform, 2008

    Google Scholar 

  7. Mid and long range plan for renewable energy development, Chinese Committee for National Development and Reform, 2007

    Google Scholar 

  8. B. Lu, Y. Li, X. Wu, Z. Yang, in A review of recent advances in wind turbine condition monitoring and fault diagnosis (Power Electronics and Machines in Wind Applications, PEMWA, IEEE, 2009), pp. 1–7

    Google Scholar 

  9. 2009 wind technologies market report, U.S. Department of Energy, 2010

    Google Scholar 

  10. J. Ribrant, L. Bertling, Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. IEEE Power Engineering Society General Meeting, 2007

    Google Scholar 

  11. E.J. Terrell, W.M. Needelman, J.K. Kyle, Current and future tribological challenges in wind turbine power systems, in STLE/ASME international joint tribology conference, ASME IJTC2009-15220, 2009

    Google Scholar 

  12. Wind Energy Siting Handbook, American Wind Energy Association, 2008

    Google Scholar 

  13. L. Mumper, Wind turbine technology turns on bearings and condition monitoring. Utilities Manager, 2006

    Google Scholar 

  14. M. Islam, D.S.K. Ting, A. Fartaj, Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev. 12(4), 1087–1109 (2008)

    Article  Google Scholar 

  15. A.C. Hansen, C.P. Butterfield, Aerodynamics of horizontal-axis wind turbines. Annu. Rev. Fluid Mech. 25(1), 115–149 (1993)

    Article  Google Scholar 

  16. S. Oerlemans, P. Sijtsma, B. Méndez López, Location and quantification of noise sources on a wind turbine. J. Sound Vib. 299(4–5), 869–883 (2007)

    Article  Google Scholar 

  17. A.D. Hansen, L.H. Hansen, Wind turbine concept market penetration over 10 years (1995–2004). Wind Energy 10, 81–97 (2007)

    Article  Google Scholar 

  18. L.H. Hansen, L. Helle, F. Blaabjerg, E. Ritchie, S. Munk-Nielsen, H. Binder, P. Soerensen, B. Bak-Jensen, Conceptual survey of generators and power electronics for wind turbines. Riso National Lab Technical Report, 2001

    Google Scholar 

  19. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy (Wiley, NY, 2001)

    Google Scholar 

  20. A. Petersson, Analysis, modeling and control of doubly-fed induction generators for wind turbines, in Department of Energy and Environment, Chalmers University of Technology, 2005

    Google Scholar 

  21. H. Li, Z. Chen, Overview of different wind generator systems and their comparisons. Renew. Power Gener. IET 2(2), 123–138 (2008)

    Article  Google Scholar 

  22. H. Polinder, F.F.A. van der Pijl, G.J. de Vilder, P.J. Tavner, Comparison of direct-drive and geared generator concepts for wind turbines. Energy conversion. IEEE Trans 21(3), 725–733 (2006)

    Google Scholar 

  23. G.L. Johnson, Wind Energy Systems (Prentice-Hall, Englewood Cliffs, 1985)

    Google Scholar 

  24. D.S. Zinger, E. Muljadi, Annualized wind energy improvement using variable speeds. IEEE Trans. Indus. Appl. 33(6), 1444–1447 (1997)

    Article  Google Scholar 

  25. S.A. Akdag, Ö. Güler, Comparison of wind turbine power curve Models, in International Renewable Energy Congress, Sousse, Tunisia, 2010

    Google Scholar 

  26. C. Zhe, J.M. Guerrero, F. Blaabjerg, A review of the state of the art of power electronics for wind turbines. Power Electron. IEEE Trans. 24(8), 1859–1875 (2009)

    Article  Google Scholar 

  27. J. Peeters, Simulation of Drive Train Loads in a Wind Turbine (Katholieke Universiteit Leuven, Lueven, 2006)

    Google Scholar 

  28. E. Hau, Wind Turbines (Springer-Verlag, Berlin, 2006)

    Google Scholar 

  29. W. Musial, S. Butterfield, B. McNiff, Improving wind turbine gearbox reliability, in Proceedings of the European Wind Energy Conference, Milan, Italy, 2007

    Google Scholar 

  30. H. Slootweg, E. De Vries, Inside wind turbines-fixed vs variable speed. Renew. Energy World 6(1), 3041 (2003)

    Google Scholar 

  31. American Gear Manufacturer’s Association, Standard for design and specification of gearboxes for wind turbines, ANSI/AGMA/AWEA 6006-A03, 2004

    Google Scholar 

  32. H. Stiesdal, The Wind Turbine Components and Operation (Bonus-Info, Denmark, 1999)

    Google Scholar 

  33. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    MATH  Google Scholar 

  34. D.H. Buckley, Surface Effects in Adhesion, Friction, Wear, and Lubrication (Elsevier, Amsterdam, 1981)

    Google Scholar 

  35. M.N. Kotzalas, G.L. Doll, Tribological advancements for reliable wind turbine performance. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 368(1929), 4829–4850 (2010)

    Article  Google Scholar 

  36. T.A. Harris, M.N. Kotzalas, Essential Concepts of Bearing Technology (Taylor and Francis, Boca Raton, 2007)

    Google Scholar 

  37. K. Iso, A. Yokouchi, H. Takemura, Research work for clarifying the mechanism of white structure flaking and extending the life of bearings. in SAE Technical Paper 2005-01-1868, Society of Automotive Engineers, 2005

    Google Scholar 

  38. M. Kohara, T. Kawamura, M. Egami, Study on mechanism of hydrogen generation from lubricants. Tribol. Trans. 46, 5360 (2006)

    Google Scholar 

  39. A.V. Olver, The mechanism of rolling contact fatigue: an update. J. Eng. Tribol. 219(5), 313–330 (2005)

    Article  Google Scholar 

  40. G. Lundberg, A.Z. Palmgren, Dynamic capacity of rolling bearings. Proc. R. Swed. Acad. Eng. Sci. 196, 50 (1947)

    Google Scholar 

  41. E.V. Zaretsky, Palmgren revisited–a basis for bearing life prediction. Lubr. Eng. 54, 1823 (1998)

    Google Scholar 

  42. F.T. Barwell, Report on papers in Session 3 (lubrication), in Proceedings of the International Conference on Gearing (1958), pp. 23–25

    Google Scholar 

  43. D. Dowson, G.R. Higginson, Elastohydrodyanmic Lubrication, 2nd edn. (1977)

    Google Scholar 

  44. A.N. Grubin, Investigation of the Contact of Machine Components (Central Scientific Research Institute for Technology and Mechanics, Moscow, 1949), Book 30

    Google Scholar 

  45. R.D. Britton, C.D. Elcoate, M.P. Alanou, H.P. Evans, R.W. Snidle, Effect of surface finish on gear tooth friction. J. Tribol. 122(1), 354–360 (2000)

    Article  Google Scholar 

  46. A.N. Grubin, Fundamentals of the hydrodynamic theory of lubrication of heavily loaded cylindrical surfaces. Investigation of the Contact Machine Components, No. 30, 115–166 (1949)

    Google Scholar 

  47. D. Dowson, G.R. Higginson, A numerical solution to the elasto-hydrodynamic problem. J. Mech. Eng. Sci. 1(1), 6–15 (1959)

    Article  Google Scholar 

  48. D. Dowson, G.R. Higginson, Elastohydrodynamic Lubrication (Pergamon Press, Oxford, 1977)

    Google Scholar 

  49. S. Li, A. Kahraman, Prediction of spur gear mechanical power losses using a transient elastohydrodynamic lubrication model. Tribol. Trans. 53, 554–563 (2010)

    Article  Google Scholar 

  50. R. Gohar, Elastohydrodynamics (Wiley, New York, 1988)

    MATH  Google Scholar 

  51. R. Errichello, Friction, lubrication, and wear of gears, in ASM Handbook Friction, Lubrication, and Wear Technology, vol. 18, ed. by P. Blau (ASM International, Materials Park, Ohio, 1992), pp. 535–545

    Google Scholar 

  52. T.E. Tallian, Simplified contact fatigue life prediction model–part I: review of published models. J. Tribol. 114(2), 207–213 (1992)

    Article  Google Scholar 

  53. G. Stachowiak, A.W. Batchelor, Engineering Tribology (Elsevier, Oxford, 2005)

    Google Scholar 

  54. G.L. Doll, B.K. Osborn, Engineering surfaces of precision steel components. Proc. Annu. Tech. Conf. Soc. Vac. Coaters 44, 78–84 (2001)

    Google Scholar 

  55. G.L. Doll, C.R. Ribaudo, R.D. Evans, Engineered surfaces for steel rolling element bearings and gears. Mater. Sci. Technol. 2, 367–374 (2004)

    Google Scholar 

  56. A. Ragheb, M. Ragheb, Wind turbine gearbox technologies, in International Nuclear and Renewable Energy Conference (INREC10) (Amman, Jordan, 2010)

    Google Scholar 

  57. R.W. Hyers, J.G. Mcgowan, K.L. Sullivan, J.F. Manwell, B.C. Syrett, Condition monitoring and prognosis of utility scale wind turbines. Energy Mater.: Mater. Sci. Eng. Energy Syst. 1(3), 187–203 (2006)

    Article  Google Scholar 

  58. F.L. Litvin, A. Fuentes, Gear Geometry Applied Theory (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  59. J.E. higley, Mechanical Engineering Design (McGraw-Hill, New York, 1963)

    Google Scholar 

  60. P. Lynwander, Gear Drive Systems: Design and Application (Marcel Dekker, NY, 1983)

    Google Scholar 

  61. F.L. Litvin, A. Fuentes, I. Gonzalez-Perez, L. Carvenali, K. Kawasaki, R.F. Handschuh, Modified involute helical gears: computerized design simulation of meshing and stress analysis. Comput. Methods Appl. Mech. Eng. 192(33–34), 3619–3655 (2003)

    Article  MATH  Google Scholar 

  62. J. Kleemola, A. Lehtovaara, Experimental simulation of gear contact along the line of action. Tribol. Int. 42, 1453–1459 (2009)

    Article  Google Scholar 

  63. G.M. Maitra, Handbook of Gear Design (Tata McGraw-Hill, New Delhi, 1997)

    Google Scholar 

  64. A.H. Elkholy, Tooth load sharing in high contact ratio spur gears. J. Mech. Trans. Autom. Des. 107(1), 11–16 (1985)

    Article  MathSciNet  Google Scholar 

  65. S. Avinash, Application of a system level model to study the planetary load sharing behavior. J. Mech. Des. 127(3), 469–476 (2005)

    Article  Google Scholar 

  66. C.R.M. Rao, G. Muthuveerappan, Finite element modelling and stress analysis of helical gear teeth. Comput. Struct. 49(6), 1095–1106 (1993)

    Article  Google Scholar 

  67. B.R. Hohn, K. Michaelis, Influence of oil temperature on gear failures. Tribol. Int. 37(2), 103–109 (2004)

    Article  Google Scholar 

  68. H. Blok, Les temperatures de surface dans les conditions de graissage sons pression extreme, in Second World Petroleum Congress, Paris, 1937

    Google Scholar 

  69. E.E. Shipley, Failure analysis of coarse-pitch, hardened, and ground gears. Paper No. P229.26, (American Gear Manufacturers Association, Alexandria, 1982), pp. 1–24

    Google Scholar 

  70. S. Tanaka, Appreciable increases in surface durability of gear pairs with mirror-like finish, Paper No. 84-DET-223, (American Society of Mechanical Engineers, Alexandria, 1984), pp. 1–8

    Google Scholar 

  71. X. Ai, Effect of debris contamination on the fatigue life of roller bearings. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 215(6), 563–575 (2001)

    Article  Google Scholar 

  72. I. Allison, E. Hearn, A new look at the bending strength of gear teeth. Exp. Mech. 20(7), 217–225 (1980)

    Article  Google Scholar 

  73. J. Hiremagalur, B. Ravani, Effect of backup ratio on root stresses in spur gear design. Mech. Based Des. Struct. Mach.: Int. J. 32(4), 423–440 (2004)

    Article  Google Scholar 

  74. W. Lewis, Investigation of the strength of gear teeth, in Proceedings of Engineers Club(1892), pp. 16–23

    Google Scholar 

  75. T.J. Dolan, E.L. Broghamer, A photoelastic study of stresses in gear tooth fillets. University of Illinois Bulletin, vol 355 (1942)

    Google Scholar 

  76. B.W. Kelley, R. Pedersen, The beam strength of modern gear tooth design. Transactions of the S.A.E., 1957

    Google Scholar 

  77. X.Q. Peng, L. Geng, W. Liyan, G.R. Liu, K.Y. Lam, A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending. Comput. Mech. 21(3), 253–261 (1998)

    Article  MATH  Google Scholar 

  78. J.D. Andrews, A finite element analysis of bending stresses induced in external and internal involute spur gears. J. Strain Anal. Eng. Des. 26(3), 153–163 (1991)

    Article  Google Scholar 

  79. M.A. Miner, Cumulative damage in fatigue. J. Appl. Mech. 67, A159–A164 (1945)

    Google Scholar 

  80. A.Z. Palmgren, Die Lebensdauer von Kugelagern. 2 ver Deutsch Ing 68, 339–341 (1924)

    Google Scholar 

  81. T.A. Harris, J.H. Rumbarger, C.P. Butterfield, Wind turbine design guideline DG03: yaw and pitch rolling bearing life, NREL Technical Report No. NREL/TP-500-42362, 2009

    Google Scholar 

  82. T. Senjyu, R. Sakamoto, N. Urasaki, T. Funabashi, H. Fujita, H. Sekine, Output power leveling of wind turbine generator for all operating regions by pitch angle control. IEEE Trans. Energy Convers. 21(2), 467–475 (2006)

    Article  Google Scholar 

  83. J. Aguirrebeitia, R. Aviles, I.F.d. Bustos, M. Abasolo, Calculation of general static load-carrying capacity for the design of four-contact-point slewing bearings. J. Mech. Des. 132(6), P064501 (2010)

    Article  Google Scholar 

  84. W.J. Bartz, Tribological aspects of wind power plants, in Proceedings of the World Tribology Congress III, Washington, D.C., USA, 2005

    Google Scholar 

  85. J.C. Enthoven, H.A. Spikes, Visual observation of the process of scuffing, in Lubricants and Lubrication, Proceedings of the 21st Leeds-Lyon Symposium on Tribology (1995), pp. 487–494

    Google Scholar 

  86. G.K. Nikas, R.S. Sayles, E. Ioannides, Effects of debris particles in sliding/rolling elastohydrodynamic contacts. J. Eng. Tribol. 212(5), 333–343 (1998)

    Article  Google Scholar 

  87. G. Xu, F. Sadeghi, J.D. Cogdell, Debris denting effects on elastrohydrodynamic lubricated contacts. Trans. ASME J. Tribol. 119, 579–587 (1997)

    Article  Google Scholar 

  88. X. Ai, H.S. Cheng, The influence of moving dent on point EHL contacts. Tribol. Trans. 37(2), 323–335 (1994)

    Article  Google Scholar 

  89. S. Butterfield, R. Errichello, B. McNiff, Wind turbine gearbox issues and lubrication, in IJTC2008-71361, 2008

    Google Scholar 

  90. M.N. Kotzalas, W.M. Needelman, D.R. Lucas, G.L. LaVallee, Improving wind turbine gearbox life, in AWEA Windpower Conference, Houston, 2008

    Google Scholar 

  91. R.E. Cantley, The effect of water in lubricating oil on bearing fatigue life. ASLE Trans. 20(3), 244–248 (1977)

    Article  Google Scholar 

  92. E.V. Zaretsky (ed.), Life Factors for Rolling Bearings (Society of Tribologists and Lubrication Engineers, Park Ridge, 1992)

    Google Scholar 

  93. E. Abner, in Handbook of Lubrication, ed. by E.R. Booser, Lubricant deterioration in service (CRC Press, Boca Raton, 1983)

    Google Scholar 

  94. W.M. Needelman, M.A. Barris, and G.L. LaVallee, Contamination Control for Wind Turbine Gearboxes. Power Engineering

    Google Scholar 

  95. Hydraulic fluid power—Filters—Multi-pass method for evaluating filtration performance of a filter element. ISO 16889. 2008: International Organization for Standardization

    Google Scholar 

  96. W.M. Needelman, M.A. Barris and G.L. LaVallee, Contamination control for wind turbine gearboxes. Power Engineering, 2009

    Google Scholar 

  97. W.M. Needelman, E.V. Zaretsky, New equations show oil filtration effect on bearing life. Power Transm. Des. 33(8), 65–68 (1991)

    Google Scholar 

  98. W.M. Needelman, E.V. Zaretsky, Recalibrated equations for determining effect of oil filtration on rolling bearing life, in STLE Annual Meeting, Orlando (2009)

    Google Scholar 

  99. W.M. Needelman, M.A. Barris, G.L. LaVallee, Reducing cost of operation in harsh conditions with new generation filters, in International Fluid Power Exposition, Las Vegas (2011)

    Google Scholar 

  100. G.L. LaVallee, W.M. Needelman, Dry air blankets: An effective and economical method for eradicating water contamination. Part I: principles of operation, in STLE Annual Meeting, Las Vegas (2010)

    Google Scholar 

  101. C.S. Gray, S.J. Watson, Physics of failure approach to wind turbine condition based maintenance. Wind Energy 13(5), 395–405 (2010)

    Article  Google Scholar 

  102. Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, C.K. Song, Condition moitoring and fault detection of wind turbines and related algorithms: a review. Renew. Sustain. Energy Rev. 13(1), 1–39 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elon J. Terrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Terrell, E.J., Needelman, W.M., Kyle, J.P. (2012). Wind Turbine Tribology. In: Nosonovsky, M., Bhushan, B. (eds) Green Tribology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23681-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23681-5_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23680-8

  • Online ISBN: 978-3-642-23681-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics