Skip to main content

Greenhouse Gas Emissions from Reservoirs

  • Chapter
  • First Online:
Impacts of Large Dams: A Global Assessment

Part of the book series: Water Resources Development and Management ((WRDM))

Abstract

It is difficult to conceive of another aspect of water resources development that evokes as much emotion, public concern and challenge for policy makers as dam and reservoir construction. Some want to store water, generate electricity, irrigate or ameliorate living in other ways by constructing dams. Others oppose this because dams and reservoirs destruct valuable ecosystems, displace people from river valleys where they have dwelled for millennia and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Åberg J, Bergström A, Algesten G, Söderback K, Jansson M (2004) A comparison of the carbon balances of a natural lake (L. Orträsket) and a hydroelectric reservoir (L. Skinnmuddselet) in northern Sweden. Water Res 38:531–538

    Article  Google Scholar 

  • Abril G, Guerin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos M, Matvienko B (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 19:GB4007

    Article  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biochem Cycles 18:1–12

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik JL, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 1:172–185

    Article  Google Scholar 

  • Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs and peatlands. Geology 26:535–538

    Article  Google Scholar 

  • DIVA-GIS (2002) Administrative boundaries for the world. Available at http://www.diva-gis.org/Data.htm. Accessed Feb 2007

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds and impoundments. Limnol Oceanogr 51(5):2388–2397

    Article  Google Scholar 

  • Duchemin E (2000) Hydroelectricity and greenhouse gases: emission evaluation and identification of the biogeochemical processes responsible for their production. PhD Thesis, University of Quebec, Montreal

    Google Scholar 

  • Duchemin E, Lucotte M, Canuel R, Chamberland A (1995) Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the Boreal Region. Global Biogeochem Cycles 9:529–540

    Article  CAS  Google Scholar 

  • Duchemin E, Lucotte M, Queiroz A, Canuel R, Pereira H, Almeida D, Dezincourt J (2001) Comparison of greenhouse gas emissions from an old tropical reservoir with those from other reservoirs worldwide, 27th Congress SIL 1998. International Association for Applied and Theoretical Limnology, 27th Congress, pp 1391

    Google Scholar 

  • Duchemin E, Lucotte M, St-Louis V, Canuel R (2002) Hydroelectric reservoirs as an anthropogenic source of greenhouse gases. World Resour Rev 14(3):334–353

    Google Scholar 

  • FAO (2001) Global ecological zones. Spatial database of global ecological zones created by Food and Agricultural Organisation of the United Nations

    Google Scholar 

  • Fearnside PM (2002) Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruí Dam) and the energy policy implications. Water Air Soil Pollution 133:69–96

    Article  CAS  Google Scholar 

  • Fearnside PM (2004) Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly ‘clean’ energy source. An editorial comment. Climate Change 66:1–8

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge. University Press, Cambridge, UK and New York, NY, USA

    Google Scholar 

  • Galy-Lacaux C, Delmas R, Jambert C, Dumestre JF, Labroue L, Richard S, Gosse P (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Global Biogeochem Cycles 11:471–483

    Article  CAS  Google Scholar 

  • Giles J (2006) Methane quashes green credentials of hydropower. Nature 444:524–525

    Article  Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) (1996) Climate change 1995. The science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Huttunen JT, Väisänen T, Hellsten S, Heikkinen M, Nykänen H, Jungner H, Niskanen A, Virtanen M, Lindqvist O, Nenonen O, Martikainen P (2002) Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the Northern Boreal zone in Finland. Global Biogeochem Cycles 16(1):3-1–3-7

    Article  Google Scholar 

  • ICOLD (2003) World register of dams. International Commission on Large Dams, Paris

    Google Scholar 

  • IPCC (1995) Climate change 1994. Radiative forcing of climate change. Working Group I. Summary for Policymakers. Intergovernmental Panel on Climate Change, UNEP, Cambridge University Press

    Google Scholar 

  • Kalff J (2001) Limnology: inland water ecosystems. Prentice-Hall, New Jersey

    Google Scholar 

  • Keller M, Stallard R (1994) Methane emissions by bubbling from Gatun Lake. J Geophys Res 99:8307–8319

    Article  CAS  Google Scholar 

  • Kelly CA, Rudd JWM, St Louis V, Moore V (1994) Turning attention to reservoir surfaces, a neglected area in greenhouse studies. EOS Trans Am Geophys Union 75:332–333

    Article  Google Scholar 

  • Kelly CA, Rudd JWM, Bodaly RA, Roulet NP, St Louis VL, Heyes A, Moore TR, Schiff S, Aravena R, Scott KJ, Dyck B, Harris R, Warner B, Edwards G (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environ Sci Technol 31(5):1334–1344

    Article  CAS  Google Scholar 

  • Kelly CA, Rudd JWM, Unpublished data. Ref.: St Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775

    Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Article  Google Scholar 

  • Lelieveld JOS, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Ser B 50(2):128–150

    Article  Google Scholar 

  • Lima I, Ramos F, Bambace L, Rosa R (2008) Methane emissions from large dams as renewable energy resources: a developing nation perspective. Mitigation Adaptation Strategy Global Change 13:1381–1386

    Google Scholar 

  • Matvienko B, Rosa LP, Sikar E, dos Santos MA, De Fillipo R, Cimbleris A (2001) Gas release from a reservoir in the filling stage. Verh Internat Verein Limnol 27:1415–1419

    Google Scholar 

  • Meybeck M (1995) Global distribution of lakes. In: Lerman A, Imboden DM, Gat JR (eds) Physics and chemistry of lakes. Springer, Berlin, pp 1–35

    Chapter  Google Scholar 

  • Pearce F (1996) Trouble bubbles from hydropower. New Scientist 150(2028):28–31

    Google Scholar 

  • Rantakari M, Kortelainen P (2005) Interannual variation and climatic regulation of the CO2 emission from Large Boreal Lakes. Global Change Biol 11:1368–1380

    Article  Google Scholar 

  • Rosa LP, dos Santos MA, Tundisi JG, Sikar BM (1997) Measurements of greenhouse gas emissions in Samuel, Tucuruí and Balbina Damsrsquo. In: Rosa LP, dos Santos MS (eds) Hydropower plants and greenhouse gas emissions. Coordenação dos Programas de Pós-Graduação em Engenharia (COPPE). Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, pp 41–55

    Google Scholar 

  • Rosa L, Matvienko B, dos Santos M, Sikar E (2002) First Brazilian inventory of anthropoenic greenhouse gas emissions, background reports, carbon dioxide and methane emissions from Brazilian hydroelectric reservoirs. In: M.o.S.a. Technology (ed) Brazilian Government

    Google Scholar 

  • Rosa LP, dos Santos MA, Matvienko B, dos Santos EO, Sikar E (2004) Greenhouse gases emissions by hydroelectric reservoirs in tropical regions. Climatic Change 66:9–21

    Article  CAS  Google Scholar 

  • Ruttner F (1940) Grundriss der Limnologie. Walter de Gruyter Co, Berlin

    Google Scholar 

  • Schellhase H, MacIsaac E, Smith H (1997) Carbon budget estimates for reservoirs on the Columbia River in British Columbia. Environ Professional 19:48–57

    Google Scholar 

  • Shiklomanov IA (1993) World’s freshwater resources. In: Gleick PH (ed) Water in crisis: a guide to the world’s fresh water resources. Oxford University Press, New York, pp 13–24

    Google Scholar 

  • Shiklomanov IA, Rodda JC (2003) World water resources at the beginning of the twenty-first century. Cambridge University Press, Cambridge

    Google Scholar 

  • Soumis N, Duchemin E, Canuel R, Lucotte M (2004) Greenhouse gas emissions from reservoirs of the Western United States. Global Biogeochem Cycles 18(13):GB2015

    Google Scholar 

  • Soumis N, Lucotte M, Canuel R, Weissenberger S, Houel S, Larose C, Duchemin E (2005) Hydroelectric reservoirs as anthropogenic sources of greenhouse gases. In: Lehr JH, Keeley J (eds) Water encyclopedia: surface and agricultural water. Wiley Interscience, New York, pp 203–210

    Google Scholar 

  • St Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775

    Article  Google Scholar 

  • Tavares de Lima I, Novo E, Ballester M, Ometto J (1998) Methane production, transport and emissions in Amazon hydroelectric plants, 27th Congress. International Association for Applied and Theoretical Limnology, Book of Abstracts, Dublin

    Google Scholar 

  • Therrien J, Tremblay A, Jacques R (2005) CO2 emissions from semi-arid reservoirs and natural aquatic ecosystems, greenhouse gas emissions — fluxes and processes: hydroelectric reservoirs and natural environments. Springer, New York, pp 233–250

    Google Scholar 

  • Tremblay A, Lambert M, Gagnon L (2004) Do hydroelectric reservoirs emit greenhouse gases? Environ Manage 33(Suppl 1):509–517

    Google Scholar 

  • Tremblay A, Therrien J, Hamlin B, Wichmann E, LeDrew L, Tremblay A, Therrien J, Hamlin B, Wichmann E, LeDrew L (2005) GHG emissions from Boreal Reservoirs and natural aquatic ecosystems, greenhouse gas emissions — fluxes and processes: hydroelectric reservoirs and natural environments. Springer, New York, pp 209–232

    Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of our dear colleague and co-author Jari Huttunen and his ground-breaking work on greenhouse gas emissions from reservoirs. Mr. Huttunen suddenly passed away during this project.

The authors acknowledge the excellent support of the Helsinki University of Technology (now part of Aalto University), Water Resources Laboratory and its staff. Particular thanks are due to Professor Pertti Vakkilainen and Professor Asit K. Biswas for their encouragement for this project, and to Pirkko Kortelainen, Marie Thouvenot and Jukka Turunen for comments and insight on the overall topic of this work. The financial support of Maa- ja Vesitekniikan Tuki r.y. is greatly appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

Table 4.6 List of GHG observations from the reservoirs

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varis, O., Kummu, M., Härkönen, S., Huttunen, J.T. (2012). Greenhouse Gas Emissions from Reservoirs. In: Tortajada, C., Altinbilek, D., Biswas, A. (eds) Impacts of Large Dams: A Global Assessment. Water Resources Development and Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23571-9_4

Download citation

Publish with us

Policies and ethics