Skip to main content

Numerical Simulations of the Nonhydrostatic Transformation of Basin-Scale Internal Gravity Waves and Wave-Enhanced Meromixis in Lakes

  • Chapter
  • First Online:
Nonlinear Internal Waves in Lakes

Abstract

The processes of the transformation of basin-scale internal waves are simulated by a numerical three-dimensional nonhydrostatic model that is applied to a sequence of idealized problems, namely the transformation and degeneration of basin-scale internal waves in a rectangular basin, in a basin with a sloping bottom, in a basin with a sill and a cross-section constriction, and finally in a small, elongated lake. The results of the simulations are compared with laboratory experiments and with field observations, when they are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For brevity, this will be called a “15-diagonal” matrix.

References

  • Armi L, Farmer DM (1986) Maximal two-layer exchange through a contraction with barotropic net flow. J Fluid Mech 164: 27–51

    Article  Google Scholar 

  • Armi L, Riemenschneider U (2008) Two-layer hydraulics for a co-located crest and narrows. J Fluid Mech 615: 169–184

    Article  Google Scholar 

  • Bergh J, Berntsen J (2009a) Numerical studies of wind forced internal waves with a nonhydrostatic model. Ocean Dynamics 59:1025–1041

    Article  Google Scholar 

  • Bergh J, Berntsen J (2009b) The surface boundary condition in nonhydrostatic ocean models. Ocean Dynamics DOI 10.1007/s10236-009-0242-1

    Google Scholar 

  • Berntsen J (2000) Users guide for a mode-split σ- coordinate numerical ocean model. Tech. Rep. 135, Dept. of Applied Mathematics, University of Bergen, Bergen, Norway

    Google Scholar 

  • Berntsen J, Furnes G (2005) Internal pressure error in sigma-coordinate ocean models-sensitivity of the growth of the flow to the time stepping method and possible nonhydrostatic effects. Cont Shelf Res 25: 829–848

    Article  Google Scholar 

  • Berntsen J, Xing J, Alendal G (2006) Assessment of non-hydrostatic ocean models using laboratory scale problems. Cont Shelf Res 26: 1433–1447

    Article  Google Scholar 

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model, In: Heaps N. (ed) Three-Dimensional Coastal Ocean Models, Am Geoph Union, New York

    Google Scholar 

  • Boegman L, Ivey GN, Imberger J (2005a) The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr 50: 1620–1637

    Article  Google Scholar 

  • Boegman L, Ivey GN, Imberger J (2005b) The energetics of large-scale internal wave degeneration in lakes. J Fluid Mech 531: 159–180

    Article  Google Scholar 

  • Bogucki D, Garrett C (1993) A simple model for the shear-induced decay of an internal solitary wave. J Phys Oceanogr 8: 1767–1776

    Article  Google Scholar 

  • Bourgault D, Kelley DE (2007) On the reflectance of uniform slopes for normally incident interfacial solitary waves. J Phys Oceanogr 37: 1156–162

    Article  Google Scholar 

  • Bourgault D, Blokhina MD, Mirshak R, Kelley DE (2007) Evolution of a shoaling internal solitary wavetrain. Geoph Res Letters 34, L03601, doi:10.1029/2006GL028462

    Article  Google Scholar 

  • Brovchenko I, Gorodetska N, Maderich V, Nikishov V, Terletska K (2007) Interaction of internal solitary waves of large amplitude with obstacle. Applied Hydromechanics 9(81): 3-7

    Google Scholar 

  • Camassa R, Choi W, Michallet H, Rusas P, Sveen JK (2006) On the realm of validity of strongly nonlinear asymptotic approximations for internal waves. J Fluid Mech 549:1–23

    Article  Google Scholar 

  • Casulli V (1999) A semi-implicit finite difference method for non-hydrostatic, free-surface flows. Int J Numer Methods Fluids 30: 425–440

    Article  Google Scholar 

  • Casulli V, Stelling G (1998) Numerical simulation of 3D quasi-hydrostatic free-surface flows. J Hydraul Eng 124: 678–686

    Article  Google Scholar 

  • Casulli V, Zanolli P (2002) Semi-implicit numerical modeling of non-hydrostatic free-surface flows for environmental problems. Math Comput Model 36: 1131–1149

    Article  Google Scholar 

  • Chen CY (2007) An experimental study of stratified mixing caused by internal solitary waves in a two-layered fluid system over variable seabed topography. Ocean Eng: 34: 1995–2008

    Article  Google Scholar 

  • Chen CY, Hsu JRC, Chen HH, Kuo CF, Cheng MH (2007a) Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Eng 34: 157–170

    Article  Google Scholar 

  • Chen CY, Hsu JRC, Cheng MH, Chen HH, Kuo CF (2007b) An investigation on internal solitary waves in a two-layer fluid: Propagation and reflection from steep slopes. Ocean Eng 34: 171–184

    Article  Google Scholar 

  • Chen CY, Hsu JRC, Cheng MH, Chen CW (2008) Experiments on mixing and dissipation in internal solitary waves over variable ridges. Environ Fluid Mech 8(3): 199–215

    Article  Google Scholar 

  • Cheng MH, Hsu JRC, Chen CY, Chen CW (2009) Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope. Environ Fluid Mech 9: 321–340

    Article  Google Scholar 

  • Choi W, Camassa R (1999) Fully nonlinear internal waves in a two-fluid system. J Fluid Mech 396: 1–36

    Article  Google Scholar 

  • Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22:745–762

    Article  Google Scholar 

  • Daily C, Imberger J (2003) Modelling solitons under the hydrostatic and Boussinesq approximations. Int J Num Methods Fluids 43: 231–252

    Article  Google Scholar 

  • Ezer T, Arango H, Schepetkin AF (2002) Developments in terrain-following ocean models: intercomparisons of numerical aspects. Ocean Modelling 4: 249–267

    Article  Google Scholar 

  • Farmer DM (1978) Observations of long nonlinear internal waves in a lake. J Phys Oceanogr 8: 63–73

    Article  Google Scholar 

  • Farmer DM, Armi L (1986) Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J Fluid Mech 164: 53–76

    Article  Google Scholar 

  • Filatov NN (2012, this volume) Field studies of non-linear internal waves in lakes on the globe, Chap. 2. Nonlinear Internal Waves in Lakes. Springer, Heidelberg

    Google Scholar 

  • Fletcher CAJ (1991) Computational techniques for fluid dynamics, 2nd Edn, vol 2. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Fringer OB, Street RL (2003) The dynamics of breaking progressive interfacial waves. J Fluid Mech 494: 319–353

    Article  Google Scholar 

  • Fringer OB, Gerritsen M, Street RL (2006) An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modelling 14: 139–173

    Article  Google Scholar 

  • Fructus D, Carr M, Grue J, Jensen A, Davies PA (2009) Shear-induced breaking of large internal solitary waves. J Fluid Mech 620: 1–29

    Article  Google Scholar 

  • Gill AE 1982 Atmosphere–ocean dynamics. Academic Press, London

    Google Scholar 

  • Gorodetska N, Nikishov V (2012, this vol.) Laboratory modelling on transformation of large amplitude internal waves by topographic obstructions, Chap. 3. Nonlinear Internal Waves in Lakes. Springer, Heidelberg.

    Google Scholar 

  • Grimshaw R, Pelinovsky E, Poloukhina O (2002). Higher-order Korteweg-de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Processes in Geophysics 9, 221–235

    Article  Google Scholar 

  • Grimshaw R, Pelinovsky E, Talipova T (2008) Fission of a weakly nonlinear interfacial solitary wave at a step. Geophys Astrophys Fluid Dyn 102: 179–194

    Article  Google Scholar 

  • Grue J, Jensen PO, Rusas P-O, Sveen JK (1999) Properties of large-amplitude internal waves. J Fluid Mech 380: 257–278

    Article  Google Scholar 

  • Guo Y, Sveen JK, Davies PA, Grue J, Dong P (2004) Modelling the motion of an internal solitary wave over a bottom ridge in a stratified fluid. Env Fluid Mech 4: 415–441

    Article  Google Scholar 

  • Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8: 2182–2189

    Article  Google Scholar 

  • Heggelund Y, Vikebo F, Berntsen J, Furnes G (2004) Hydrostatic and non-hydrostatic studies of gravitational adjustment over a slope. Cont Shelf Res 24: 2133–2148

    Article  Google Scholar 

  • Helfrich KR 1992 Internal solitary wave breaking and run-up on a uniform slope. J Fluid Mech 243: 133–154

    Article  Google Scholar 

  • Helfrich KR, Melville WK (2006) Long nonlinear internal waves. Ann Rev Fluid Mech 38: 395–425

    Article  Google Scholar 

  • Hirt C, Nichols B (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comp Physics 39: 201–225

    Article  Google Scholar 

  • Horn DA, Redekopp LG, Imberger J, Ivey GN (2000) Internal wave evolution in a space-time varying field. J Fluid Mech 424: 279–301

    Google Scholar 

  • Horn DA, Imberger J, Ivey GN (2001) The degeneration of large-scale interfacial gravity waves in lakes. J Fluid Mech 434: 181–207

    Article  Google Scholar 

  • Howard LN (1961) Note on a paper by John W. Miles. J Fluid Mech 10: 509–512

    Article  Google Scholar 

  • Hult E, Troy CD, Koseff JR (2009) The breaking of interfacial waves at a submerged bathymetric ridge. J. Fluid Mech 637: 45–71

    Article  Google Scholar 

  • Hunkins K, Fliegel M (1973) Internal undular surges in Seneca Lake: A natural occurrence of solitons. J Geophys Res 78: 539–548

    Article  Google Scholar 

  • Hüttemann H, Hutter K (2001) Baroclinic solitary water waves in two-layer fluid system with diffusive interface. Exp Fluids 30: 317–326

    Article  Google Scholar 

  • Hutter K (1983) Hydrodynamics of lakes. Springer–Verlag, Berlin

    Google Scholar 

  • Jankowski, JA (1999) A non-hydrostatic model for free surfaces flows. PhD thesis, University of Hannover, Germany

    Google Scholar 

  • Kakutani T, Yamasaki N (1978) Solitary waves on a two-layer fluid. J Phys Soc Japan 45: 674-679

    Article  Google Scholar 

  • Kanarska Y, Maderich V (2003) A non-hydrostatic numerical model for calculating free-surface stratified flows. Ocean Dynamics 53: 176–185

    Article  Google Scholar 

  • Kanarska Y, Maderich V (2004) Strongly non-linear waves and gravitational currents in rectangular basin. Applied Hydromechanics, 6(78) No 2: 75–78

    Google Scholar 

  • Kanarska Y, Shchepetkin A, McWilliams JC (2007) Algorithm for non-hydrostatic dynamics in the Regional Oceanic Modeling System. Ocean Modelling 18: 143–174

    Article  Google Scholar 

  • Kao TW, Pan FS, Renouard D (1985) Internal solitons in the pycnocline: Generation, propagation, and shoaling and breaking over a slope. J Fluid Mech 159: 19–53

    Article  Google Scholar 

  • Keilegavlen E, Berntsen J (2009) Non-hydrostatic pressure in σ-coordinate ocean models. Ocean Modelling 28: 240–249

    Article  Google Scholar 

  • Keulegan GH (1959) Energy dissipation in standing waves in rectangular basins. J Fluid Mech 6: 33–50

    Article  Google Scholar 

  • Klymak JM and Moum J (2003) Internal solitary waves of elevation advancing on a shoaling shelf. Geophys Res Let doi:10.1029/2003GL017706

    Google Scholar 

  • Kocsis O, Mathis B, Gloor M, Schurter M, Wüest A (1998) Enhanced mixing in narrows: A case study at the Mainau sill (Lake Constance). Aquat Sci 60: 236–252

    Article  Google Scholar 

  • Koop CG, Butler G (1981) An investigation of internal solitary waves in a two-fluid system. J Fluid Mech 112: 225–251

    Article  Google Scholar 

  • Lamb KG (1994) Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J Geophys Res 99: 843–864

    Article  Google Scholar 

  • Lamb KG (2007) Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography. Cont Shelf Res 27: 1208–1232

    Article  Google Scholar 

  • Lamb KG, Nguyen VT (2009) On calculating energy flux in internal solitary waves with an application to reflectance. J Phys Oceanogr 39: 559–580

    Article  Google Scholar 

  • Leone C, Segur H, Hammack JL (1982) Viscous decay of long internal solitary waves. Phys Fluids 25: 942–244

    Article  Google Scholar 

  • Maderich V, Heling R, Bezhenar R, Brovchenko I, Jenner H, Koshebutskyy V, Kuschan A, Terletska K, (2008) Development and application of 3D numerical model THREETOX to the prediction of cooling water transport and mixing in the inland and coastal waters. Hydrological Processes 22: 1000–1013

    Article  Google Scholar 

  • Maderich V, Grimshaw R, Talipova T, Pelinovsky E, Choi B, Brovenchko I, Terletska K, Kim D (2009) The transformation of an interfacial solitary wave of elevation at a bottom step. Nonlinear Processes in Geophysics 16: 1–10

    Article  Google Scholar 

  • Maderich V, Talipova T, Grimshaw R, Brovenchko I, Terletska K, Pelinovsky E, Choi B (2010) Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. Phys Fluids. doi:10.1063/1.3455984

    Google Scholar 

  • Mahadevan A, Oliger J, Street R, (1996a) A nonhydrostatic mesoscale ocean model. Part I: Implementation and scaling. J Phys Oceanogr 26: 1860–1879

    Google Scholar 

  • Mahadevan A, Oliger J, Street R (1996b) A nonhydrostatic mesoscale ocean model. Part II: Numerical implementation. J Phys Oceanogr 26: 1880–1900

    Google Scholar 

  • Marshall J, Hill C, Perelman L, Adcroft A (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102: 5733–5752

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997b) A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J Geophys Res 102: 5753–5766

    Article  Google Scholar 

  • Maurer J, Hutter K, Diebels S. (1996) Viscous effects in internal waves of two-layered fluids with variable depth. Eur J Mech, B/Fluids 15: 445–470

    Google Scholar 

  • Mellor GL (1991) An equation of state for numerical models of ocean and estuaries. J Atmos Ocean Tech 8: 609–611

    Article  Google Scholar 

  • Mellor G (2004) Users guide for a three-dimensional, primitive equation, numerical ocean model. Tech. rep. Princeton University, Princeton

    Google Scholar 

  • Mellor GL, Hakkinen S, Ezer T, Patchen R. (2002) A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinardi N, Woods JD (eds.), Ocean Forecasting: Conceptual Basis and Applications, Springer, Berlin

    Google Scholar 

  • Michallet H, Ivey GN (1999) Experiments on mixing due to internal solitary waves breaking on uniform slopes. J Geophys Res 104: 13467–13477

    Article  Google Scholar 

  • Miles JW (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10: 496–508

    Article  Google Scholar 

  • Miles JW, Howard LN (1964) Note on a heterogeneous shear flow. J Fluid Mech 20: 331–336

    Article  Google Scholar 

  • Miyata, M. 1984. An internal solitary wave of large amplitude. La Mer 23, 43–48

    Google Scholar 

  • Moum JN, Farmer DM, Smyth WD, Armi L, Vagle S (2003) Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J Phys Oceanogr 33: 2093–2112

    Article  Google Scholar 

  • Münnich M (1996) The influence of bottom topography on internal seiches in stratified media. Dyn Atmos Ocean 23: 257–266

    Article  Google Scholar 

  • Orr MH, Mignerey PC (2003) Nonlinear internal waves in the South China Sea: observation of the conversion of depression internal waves to elevation internal waves. J Geophys Res. doi:10.1029/2001JC001163

    Google Scholar 

  • Ostrovsky LA, Stepanyants YA (1989). Do internal solitons exist in the ocean? Rev Geophys 27: 293–310

    Article  Google Scholar 

  • Ostrovsky LA, Stepanyants YA. (2005) Internal solitons in laboratory experiments: Comparison with theoretical models. Chaos, doi: 10.1063/1.2107087

    Google Scholar 

  • Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sabinin KD (1992) Internal wave train above the Mascarene Ridge. Izvestiya, Atmos Ocean Phys 28:625–633

    Google Scholar 

  • Seager V (1988) A SLAP for the masses. LLNL Tech Rep. UCRL-100267, Livermore, CA.

    Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The Regional Ocean Modeling System: A split-explicit, free-surface, topography-following coordinate oceanic model. Ocean Modelling 9: 347–404

    Article  Google Scholar 

  • Shepherd TG (1993) A unified theory of available potential-energy. Atmos - Ocean 31: 1–26

    Article  Google Scholar 

  • Shroyer EL, Moum JN, Nash JD (2008) Observations of polarity reversal in shoaling nonlinear internal waves. J Phys Oceanogr 39: 691–701

    Article  Google Scholar 

  • Siegel DA, Domaradzki JA (1994) Large-eddy simulation of decaying stably stratified turbulence. J Phys Oceanogr 24: 2353–2386

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91: 99–164

    Article  Google Scholar 

  • Staschuk N, Vlasenko V, Hutter K (2005) Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water. Nonlinear Proc Geoph 12: 955–964

    Article  Google Scholar 

  • Stocker T, Hutter K (1987) Topographic waves in channels and lakes on the f-plane. Springer, Berlin.

    Book  Google Scholar 

  • Sveen JK, Davies PA, Grue J (2002) On the breaking of internal solitary waves at a ridge. J Fluid Mech 469: 161–188

    Article  Google Scholar 

  • Thorpe SA (1974) Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch Ness? J Fluid Mech 63: 509–527.

    Article  Google Scholar 

  • Thorpe SA (1977) Turbulence and mixing in a Scottish loch. Phil Trans R Soc Lond A 286: 125–181

    Article  Google Scholar 

  • Thorpe SA, Hall A, Crofts I (1972) The internal surge in Loch Ness. Nature 237: 96–98.

    Article  Google Scholar 

  • Thorpe SA (1997) On the interaction of internal waves reflecting from slopes. J Phys Oceanogr 27:2072–2078

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Meteor Soc 79: 61–78

    Article  Google Scholar 

  • Troy CD, Koseff JR (2005) The instability and breaking of long internal waves. J Fluid Mech 543: 107–136

    Article  Google Scholar 

  • Van Leer B (1979) Toward the ultimate conservative difference scheme. V: A second order sequel to Godunov’s method. J Comput Phys 32: 101–136

    Article  Google Scholar 

  • Van Senden, DC, Imboden DM (1989) Internal seiche pumping between sill-separated basins. Geophys Astrophys Fluid Dyn 48: 135–150

    Article  Google Scholar 

  • Venayagamoorthy SK, Fringer OB (2005) Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves. Geophys Res Lett. doi:10.1029 /2005GL023432

    Google Scholar 

  • Vlasenko VI, Hutter K (2002a) Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Processes in Geophysics 8: 223–239

    Article  Google Scholar 

  • Vlasenko VI, Hutter K (2002b) Transformation and disintegration of strongly nonlinear internal waves by topography in stratified lakes. Annales Geophys 20: 2087–2103

    Article  Google Scholar 

  • Vlasenko V, Hutter K (2002c) Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J Phys Oceanogr 32: 1779–1790

    Article  Google Scholar 

  • Vlasenko V, Ostrovsky L, Hutter K (2005) Adiabatic behaviour of strongly nonlinear internal solitary waves in slope-shelf areas. J Geophys Res. doi: 10.1029/2004JC002705

    Google Scholar 

  • Wadzuk M, Hodges BR (2004) Hydrostatic and non-hydrostatic internal wave models. Final report to ONR. CRWR Online Report 04-09, U. Texas, Austin. Available from: http://www.crwr.utexas.edu/online.shtml

  • Wessels F, Hutter K (1996) Interaction of internal waves with topographic sill in a two-layer fluid. J Phys Oceanogr 26: 5–20

    Article  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    Google Scholar 

  • Winters KB, Lombard PN, Riley JJ, D’Asaro EA (1995) Available potential energy and mixing in density stratified fluids. J Fluid Mech 289: 115–128

    Article  Google Scholar 

  • Wuest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Ann Rev Fluid Mech 35: 373–425

    Article  Google Scholar 

  • Zhao Z, Klemas V, Zheng Q, Yan X (2003) Satellite observation of internal solitary waves converting polarity. Geophys Res Let. doi:10.1029/2003GL018286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Maderich, V., Brovchenko, I., Terletska, K., Hutter, K. (2012). Numerical Simulations of the Nonhydrostatic Transformation of Basin-Scale Internal Gravity Waves and Wave-Enhanced Meromixis in Lakes. In: Hutter, K. (eds) Nonlinear Internal Waves in Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23438-5_4

Download citation

Publish with us

Policies and ethics