Skip to main content

Photothermal Radiometry applied in nanoliter melted tellurium alloys

  • Chapter
  • First Online:
Materials Challenges and Testing for Supply of Energy and Resources

Abstract

We report on thermal measurements of molten materials at the nanoliter scale. An experimental setup of Photothermal Radiometry (PTR), formerly developed for solid state measurements, has been adapted for this purpose. The material is a chalcogenide glass-type tellurium alloy, Ge2Sb2Te5 (GST), amorphous at room temperature, and that becomes crystalline at 130°C. The same material, brought to its melting temperature Tm, about 600°C, becomes amorphous after rapid cooling. Since the liquid is the precursor phase of the amorphous state, its characterization is of paramount importance. Thin film PTR characterization was first performed in solid state by measuring the GST thermal conductivity evolution during the structural phase changing, from the amorphous phase to its crystalline phase. In order to characterize the melt at high temperature, a lightly Ge-doped Te alloy sample was secondly fabricated. This latter tellurium alloy melts at a lower temperature, (Tm~450°C, as for pure tellurium) than GST. A random lattice of hemispherical tellurium structures, 500 nm in radius, was grown by MOCVD technique on a thermally oxidized silicon substrate. The hemispheres were then embedded in a 500 nm SiO2 protecting layer in order to prevent evaporation during the melting. A 30 nm cap layer of Pt was then evaporated on the SiO2 as thermal transducer for the laser beam. Measurements have been performed from room temperature up to 650°C. SEM and XRD measurements performed after annealing, have shown that these samples withstood the thermal stress up to 300°C. At temperatures above 380°C some Te is still present in the hemispherical structures, but a part of it has reacted with Pt to form PtTe by migration through the SiO2 matrix. Experiments carried out at temperatures below 300°C have shown an anomalous behaviour of the thermal contact resistance between the tellurium alloy and the oxide interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

REFERENCES

  1. S. Zhu, C. Li, C. H. Su, B. Lin, H. Ban, R. Scripa, et al., J. Cryst. Growth. 250, 269 (2003).

    Article  CAS  Google Scholar 

  2. D. A. Barlow, Phys. Rev. B, 69, 193201 (2004).

    Article  Google Scholar 

  3. A. Kolobov P. Fons, A. Frenkel, A. Ankudinov, T Uruga., Nature Mater. 3, 703 (2004).

    Google Scholar 

  4. A. L. Lacaita, Solid-State Electronics 50 24–31 (2006).

    Article  CAS  Google Scholar 

  5. N. Yamada and T. Matsunaga, J. Appl. Phys. 88, 7020 (2000).

    Article  CAS  Google Scholar 

  6. R. Fallica, J.-L. Battaglia et al., J. Chem. Eng. Data, 54, 1698–1701 (2009).

    Article  CAS  Google Scholar 

  7. E.-K. Kim, S.-I. Kwun, S.-M. Lee, H. Seo, J.-G. Yoon, Appl. Phys. Lett. 76, 3864 (2000).

    Article  CAS  Google Scholar 

  8. C. Peng, L. Cheng, and M. Mansuripur, J. Appl. Phys. 82, 4183 (1997).

    Article  CAS  Google Scholar 

  9. J. P. Reifenberg, D. L. Kencke, K. E. Goodson, IEEE Elect. Dev. Let. 29, 10, Oct. 2008.

    Google Scholar 

  10. D. L. Kencke, I. V. Karpov, B. G. Johnson, et al. IEDM Tech. Dig., 323–326 (2007).

    Google Scholar 

  11. H.-C. Chien, D-J. Yao, C.-T. Hsu, Appl. Phys. Lett. 93, 231910 (2008).

    Google Scholar 

  12. H-K. Lyeo, D. G. Cahill, B-S. Lee, J. Abelson, and al., Appl. Phys. Lett. 89, 151904 (2006).

    Google Scholar 

  13. J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, J. Appl. Phys. 107, 044314 (2010).

    Article  Google Scholar 

  14. I.M. Park, J.-K. Jung, S.-O. Ryu et al, J.-K, Thin Solid Films 517, 848(2008).

    Google Scholar 

  15. J. Orava. T. Wágner, J. Sik,J. Prikry, et al, J. Appl. Phys., 104, 043523, (2008).

    Google Scholar 

  16. V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig J. Appl. Phys., 86, 5879, (1999).

    Article  CAS  Google Scholar 

  17. J. P. Reifenberg, M.A. Panzer, S. Kim, A. Gibby, et al., Appl. Phys. Lett., 91, 111904, (2007).

    Article  Google Scholar 

  18. K.N. Chen, C. Cabral Jr., L. Krusin-Elbaum Microelectronic Engineering 85, 2346 (2008).

    Article  CAS  Google Scholar 

  19. L. Krusin-Elbaum, C. Cabral, Jr., K. N. Chen, et al. Appl. Phys. Lett. 90, 141902 (2007).

    Google Scholar 

  20. S. G. Alberici, R. Zonca, B. Pashmakov Appl. Surf. Sc. 231–232, 821 (2004).

    Article  Google Scholar 

  21. C. Cabral K. N. Chen, and L. Krusin-Elbaum, V. DelineAppl. Phys. Lett. 90, 051908 (2007).

    Google Scholar 

  22. J.-L. Battaglia, A. Kusiak, C. Rossignol and N. Chigarev Phys. Rev. B 76, 184110 (2007).

    Google Scholar 

  23. D. Maillet, S André, J.-C. Batsale, A. Degiovanni, C. Moyne, « Thermal quadrupoles : Solving the heat equation through integral transforms», John Wiley and Sons, New York, (2000).

    Google Scholar 

  24. J.-L. Battaglia et al., Int. J. Therm. Sc. 45, 1035 (2006).

    Article  CAS  Google Scholar 

  25. T. F. Coleman and Y. Li, SIAM J. Optim. 6, 418 (1996).

    Article  Google Scholar 

  26. A. V. Davydov, M. H. Rand and B. B. Argent, Calphad 9, 3, 375(1995).

    Google Scholar 

  27. J. Akola, R. O. Jones, S. Kohara, T. Usuki and E. Bychkov, Phys. Rev. B 81, 094202 (2010)

    Article  Google Scholar 

  28. G. Zhao and Y. N. Wu, Phys.Rev. B 79, 184203 (2009).

    Article  Google Scholar 

  29. C. Li C.-H. Su, S. L. Lehoczky, R. N. Scripa,.B. Lin H. Ban J. Appl. Phys. 97, 083513 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cappella, A. et al. (2012). Photothermal Radiometry applied in nanoliter melted tellurium alloys. In: Böllinghaus, T., Lexow, J., Kishi, T., Kitagawa, M. (eds) Materials Challenges and Testing for Supply of Energy and Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23348-7_25

Download citation

Publish with us

Policies and ethics