Skip to main content

Speciation of Uranium in Seepage and Pore Waters of Heavy Metal-Contaminated Soil

  • Chapter
  • First Online:
Bio-Geo Interactions in Metal-Contaminated Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

Time-resolved laser-induced fluorescence spectroscopy (TRLFS) is a very helpful tool with an extremely low detection limit for analyzing speciation of certain radioactive heavy metal ions like uranium(VI). Thus this technique is preferentially appropriate for detection of speciation from that ions in environmental relevant concentrations. So TRLFS can be useful in safety assessment concerning migration behavior of radioactive elements. In this chapter, TRLFS was used to analyze the uranium speciation in naturally occurring seepage water samples, and in soil water samples, all samples collected from test site “Gessenwiese” close to Ronneburg in Eastern Thuringia (Germany). This test site was installed as a part of a research program of the Friedrich Schiller University Jena for investigations within the area of recultivated former uranium mining heaps. The TRLFS measurements on water samples collected within test site Gessenwiese revealed that the uranium speciation in that seepage water is dominated by the hydrolyzed and monomer uranium(VI) sulfate species UO2SO4(aq). The results presented here are a convincing example for the suitability of TRFLS in analyzing the speciation of uranium from naturally occurring water samples with pH values between 3.2 and 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amayri S, Arnold T, Foerstendorf H, Geipel G, Bernhard G (2004a) Spectroscopic characterization of synthetic becquerelite, Ca[(UO2)6O4(OH)6]·8H2O, and swartzite, CaMg[UO2(CO3)3]·12H2O. Can Mineral 42(4):953–962

    Article  CAS  Google Scholar 

  • Amayri S, Arnold T, Reich T, Foerstendorf H, Geipel G, Bernhard G, Massanek A (2004b) Spectroscopic characterization of the uranium carbonate andersonite Na2Ca[UO2(CO3)3] 6H2O. Environ Sci Technol 38:6032–6036

    Article  PubMed  CAS  Google Scholar 

  • Arnold T, Baumann N (2009) Boltwoodite [K(UO2)(SiO3OH)(H2O)1.5] and compreignacite K2[(UO2)3O2(OH)3]2 7H2O characterized by laser fluorescence spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 71:1964–2968

    Article  PubMed  Google Scholar 

  • Arnold T, Utsunomiya S, Geipel G, Ewing RC, Baumann N, Brendler V (2006) Adsorbed U(VI) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy. Environ Sci Technol 40:4646–4652

    Article  PubMed  CAS  Google Scholar 

  • Arnold T, Baumann N, Krawczyk-Bärsch E, Brockmann S, Zimmermann U, Jenk U, Weiß S (2011) Identification of the uranium speciation in an underground acid mine drainage environment. Geochim Cosmochim Acta. 75(8):2200–2212

    Google Scholar 

  • Baumann N, Brendler V, Arnold T, Geipel G, Bernhard G (2005) Uranyl sorption onto gibbsite studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). J Colloid Interface Sci 290:318–324

    Article  PubMed  CAS  Google Scholar 

  • Baumann N, Arnold T, Geipel G, Trueman E, Black S, Read D (2006) Detection of U(VI) on the surface of altered depleted uranium by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Sci Total Environ 366:905–909

    Article  CAS  Google Scholar 

  • Baumann N, Arnold T, Foerstendorf H, Read D (2008) Spectroscopic verification of the mineralogy of an ultra-thin mineral film on depleted uranium. Environ Sci Technol 42:8266–8269

    Article  PubMed  CAS  Google Scholar 

  • Bernhard G, Geipel G (2007) Bestimmung der Bindungsform des Urans in Mineralwässern. Vom Wasser 105(3):7–10

    CAS  Google Scholar 

  • Bernhard G, Geipel G, Brendler V, Nitsche H (1998) Uranium speciation in waters of different uranium mining areas. J Alloys Compd 271–273:201–205

    Article  Google Scholar 

  • Billard I, Ansoborlo E, Apperson K, Arpigny S, Azenha ME, Birch D, Bros P, Burrows HD, Choppin G, Couston L, Dubois V, Fanghänel T, Geipel G, Hubert S, Kim JI, Kimura T, Klenze R, Kronenberg A, Kumke M, Lagarde G, Lamarque G, Lis S, Madic C, Meinrath G, Nagaishi R, Parker D, Plancque G, Scherbaum F, Simoni E, Sinkov S, Viallesoubranne C (2003) Aqueous solutions of uranium(VI) as studied by time-resolved emission spectroscopy: a round-robin test. Appl Spectrosc 57(8):1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Brendler V, Geipel G, Bernhard G, Nitsche H (1996) Complexation in the system UO 2+2 /PO 3−4 /OH (aq) : potentiometric and spectroscopic investigations at very low ionic strengths. Radiochimica Acta 74:75–80

    CAS  Google Scholar 

  • Carrière M, Gouget B, Gallien JP, Avoscan L, Gobin R, Verbavatz JM, Khodja H (2005) Cellular distribution of uranium after acute exposure of renal epithelial cells: SEM, TEM and nuclear microscopy analysis. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms 231:268–273

    Article  Google Scholar 

  • Espana JS, Pamo EL, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20(7):1320–1356

    Article  Google Scholar 

  • Geipel G, Brachmann A, Brendler V, Bernhard G, Nitsche H (1996) Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochimica Acta 75:199–204

    CAS  Google Scholar 

  • Grawunder A, Lonschinski M, Merten D, Büchel G (2009) Distribution and bonding of residual contamination in glacial sediments at the former uranium mining leaching heap of Gessen/Thuringia, Germany. Chemie der Erde – Geochemistry 69:5–19

    Article  CAS  Google Scholar 

  • Großmann K, Arnold T, Krawczyk-Bärsch E, Diessner S, Wobus A, Bernhard G, Krawietz R (2007) Identification of fluorescent U(V) and U(VI) microparticles in a multispecies biofilm by confocal laser scanning microscopy and fluorescence spectroscopy. Environ Sci Technol 41:6498–6504

    Article  PubMed  Google Scholar 

  • Großmann K, Arnold T, Ikeda-Ohno A, Steudtner R, Geipel G, Bernhard G (2009) Fluorescence properties of a uranyl(V)-carbonate species [U(V)O2(CO3)3]5− at low temperature. Spectrochim Acta A Mol Biomol Spectrosc 72:449–453

    Article  PubMed  Google Scholar 

  • Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. In: OECD Nuclear Energy Agency (ed) Chemical thermodynamics, vol 1. Elsevier, Amsterdam, pp 230–233

    Google Scholar 

  • Günther A, Bernhard G, Geipel G, Reich T, Roßberg A, Nitsche H (2003) Uranium speciation in plants. Radiochimica Acta 91:319–328

    Article  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  PubMed  CAS  Google Scholar 

  • Haferburg G, Merten D, Büchel G, Kothe E (2007) Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rate earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484

    Article  PubMed  CAS  Google Scholar 

  • Hennig C, Schmeide K, Brendler V, Moll H, Tsushima S, Scheinost AC (2007) EXAFS investigations of U(VI), U(IV), and Th(IV) sulfato complexes in aqueous solution. Inorg Chem 46:5882–5892

    Article  PubMed  CAS  Google Scholar 

  • Hennig C, Ikeda A, Schmeide K, Brendler V, Moll H, Tsushima S, Scheinost AC, Skanthakumar S, Wilson R, Soderholm L, Servaes K, Görrler-Walrand C, van Deun R (2008) The relationship of monodentate and bidentate coordinated uranium(VI) sulphate in aqueous solution. Radiochimica Acta 96:607–611

    Article  CAS  Google Scholar 

  • Kirishima A, Kimura T, Tochiyama O, Yoshida Z (2003) Luminescence study of tetravalent uranium in aqueous solution. Chem Commun 7:910–911

    Article  Google Scholar 

  • Kirishima A, Kimura T, Nagaishi R, Tochiyama O (2004) Luminescence properties of tetravalent uranium in aqueous solution. Radiochimica Acta 92:705–710

    Article  CAS  Google Scholar 

  • Křepelová A, Brendler V, Sachs S, Baumann N, Bernhard G (2007) U(VI)-kaolinite surface complexation in absence and presence of humic acid studied by TRLFS. Environ Sci Technol 41:6142–6147

    Article  PubMed  Google Scholar 

  • Merten D, Kothe E, Büchel G (2004) Studies on microbial heavy metal retention from uranium mine drainage water with special emphasis on rare earth elements. Mine Water Environ 23:34–43

    Article  CAS  Google Scholar 

  • Moulin C, Beaucaire C, Decambox P, Mauchien P (1990) Determination of uranium in solution at the ng L−1 level by time-resolved laser-induced spectrofluorimetry – application to geological samples. Anal Chim Acta 238(2):291–296

    Article  CAS  Google Scholar 

  • Moulin C, Decambox P, Moulin V, Decaillon JG (1995) Uranium speciation in solution by time-resolved laser-induced fluorescence. Anal Chem 67(2):348–353

    Article  CAS  Google Scholar 

  • Steudtner R, Arnold T, Großmann K, Geipel G, Brendler V (2006) Luminescence spectrum of uranyl(V) in 2-propanol perchlorate solution. Inorg Chem Commun 9:939–941

    Article  CAS  Google Scholar 

  • Vercouter T, Vitorge P, Amekraz B, Moulin C (2008) Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI). Inorg Chem 47(6):2180–2189

    Article  PubMed  CAS  Google Scholar 

  • Vetešník A, Semelová M, Štamberg K, Vopálka D (2009) Uranium(VI) sulfate complexation as a function of temperature and ionic strength studied by TRLFS. In: Merkel BJ, Hasche-Berger A (eds) Uranium mining and hydrogeology. Springer, Berlin, pp 623–630

    Google Scholar 

  • Wang Z, Zachara JM, Yantasee W, Gassman PL, Liu C, Joly AG (2004) Cryogenic laser induced fluorescence characterization of U(VI) in Hanford vadose zone pore waters. Environ Sci Technol 38:5591–5597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the EU for funding UMBRELLA, GA No 226870, project within FP7 topic “Recovery of degraded soil resources,” and the Bundesministerium für Bildung und Forschung (BMBF), Project No 02NUK015F also for support, and E. Kothe and G. Büchel (both Friedrich-Schiller Universität Jena) for getting access to test site “Gessenwiese.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Baumann .

Editor information

Editors and Affiliations

Supplemental Information

Supplemental Information

Original sample name

Sample name in that report

GB 3

SrfWtr1

GB 6

SrfWtr2

MF3/60/1

SoilWtr1

MF3/30/2

SoilWtr2

MF3/100/3

SoilWtr3

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumann, N., Arnold, T., Lonschinski, M. (2012). Speciation of Uranium in Seepage and Pore Waters of Heavy Metal-Contaminated Soil. In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_7

Download citation

Publish with us

Policies and ethics