Skip to main content

The Emergent Nature of Time and the Complex Numbers in Quantum Cosmology

  • Chapter
  • First Online:
The Arrows of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 172))

Abstract

The nature of time in quantum mechanics is closely related to the use of a complex, rather than say real, Hilbert space. This becomes particularly clear when considering quantum field theory in time dependent backgrounds, such as in cosmology, when the notion of positive frequency ceases to be well defined. In spacetimes lacking time orientation, i.e without the possibility of defining an arrow of time, one is forced to abandon complex quantum mechanics. One also has to face this problem in quantum cosmology. I use this to argue that this suggests that, at a fundamental level, quantum mechanics may be really real with not one, but a multitude of complex structures. I relate these ideas to other suggestions that in quantum gravity time evolution may not be unitary, possibly implemented by a super-scattering matrix, and the status of CPT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Pullin’s contribution in this volume.

  2. 2.

    Conversely, as shown by Dyson [3] in his three-fold way, if His time-reversal invariant one may pass to a real (boson) or quaternionic (fermion) basis.

  3. 3.

    Of course in splitting the discussion into two parts, in Part Iwe take the view that Quantum Logic like its classical Aristotelian special case is timeless. This avoids appealing to Temporal Logic to resolving such paradoxes as that of “the sea fight tomorrow” [7274] and puts the burden of its resolution firmly where it belongs, in Part II.

  4. 4.

    By the principle of binary coding, Classical Boolean Logic may, for finite sets at least, be thought of as projective geometry over the Galois field of two elements. We shall also ignore the exceptional case of the octonions.

  5. 5.

    Strictly speaking the inverse.

  6. 6.

    Or recall what we might know about Kähler manifolds; Quantum Mechanics makes use of a Kählerian vector space.

  7. 7.

    cf Hyper-Kähler manifolds such as K3.

  8. 8.

    Vis not \({\mathcal{H}}_{\mathrm{qm}}\)thought of as real! A good reference for the properties of Clifford algebras used here is [112], see also [111].

  9. 9.

    A similar point has been made recently by Schucking [62] but he plumps for the quaternions.

  10. 10.

    We use real (Majorana) commuting spinors for convenience: there use is not essential.

  11. 11.

    Bernard Kay has implemented this argument more rigourously within an algebraic framework [120].

  12. 12.

    Amusingly CTC’s seem to be quiet innocuous from this point of view. It seems that they can be compatible with quantum mechanics.

  13. 13.

    See Hartle and Witt [114].

  14. 14.

    This is clear from the periodicity modulo eight of Clifford algebras \(\mathrm{Cliff}(s + 8,t) \equiv \mathrm{Cliff}(s,t) \otimes{M}_{16}(\mathbb{R})\)and the easily verified fact that the that \(\mathrm{Cliff}(2, 0; \mathbb{R}) \equiv {M}_{2}(\mathbb{R})\).

  15. 15.

    The matrices \({\Gamma }_{a}, {\Gamma }_{11}\)generate the M-theory Clifford algebra \(\mathrm{Cliff}(10, 1; \mathbb{R}) \equiv {M}_{32}(\mathbb{R}) \oplus{M}_{32}(\mathbb{R})\).

References

  1. E.C.G. Stueckelberg, Quantum theory in real hilbert space. Helv. Phys. Acta. 33, 727–752 (1960)

    Google Scholar 

  2. A. Trautman, On Complex Structure in Physics, in On Einstein’s path(Springer, New York, 1996), pp. 487–501 [arXiv:math-ph/9809022]

    Google Scholar 

  3. F.J. Dyson, The threefold way: Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199 (1962)

    Google Scholar 

  4. J.M. Jauch, Foundations of Quantum Mechanics(Addison Wesley, Boston, 1966)

    Google Scholar 

  5. J.M. Jauch, C. Piron, What is quantum logic. Quantaed. by P.G.O. Freund (University of Chicago Press, Chicago, 1978) pp. 166–81

    Google Scholar 

  6. J.B. Barbour, Time and complex numbers in canonical quantum gravity, Phys. Rev. D47, 5422–5429 (1993)

    Google Scholar 

  7. J. Myheim, Quantum Mechanics on Real Hilbert Space [arXiv:quant-ph/9905037]

    Google Scholar 

  8. G.W. Gibbons The elliptic interpretation of black holes and quantum mechanics. Nucl. Phys. B271, 497–508 (1986)

    Google Scholar 

  9. G.W. Gibbons, H.J. Pohle, Complex numbers, quantum mechanics and the beginning of time. Nucl. Phys. B 410, 117 (1993) [arXiv:gr-qc/9302002]

    Google Scholar 

  10. A. Ashtekar, A. Magnon, Quantum fields in curved spacetime. Proc. Roy. Soc. London A 346, 375–94 (1975)

    Google Scholar 

  11. G.W. Gibbons, The Einstein equations and the rigidity of quantum mechanicslecture given at Quantum Mechanics and Cosmology a meeting in celebration of Jim Hartle’s 60th birthday at the Isaac Newton Institute 2 Sept 1999 available on line at http://www.newton.ac.uk/webseminars/hartle60/3-gibbons/noframes.html, last accessed 30th April 2012

  12. G.W. Gibbons, Discrete Symmetries and Gravitylecture given at the Andrew Chamblin Memorial Conference at Trinity College, Cambridge, Saturday 14th Oct 2006 available on line at http://www.damtp.cam.ac.uk/research/gr/workshops/Chamblin/2006/, last accessed 30th April 2012

  13. J.L. Friedman, Lorentzian universes from nothing. Class. Quant. Grav. 15, 2639 (1998)

    Google Scholar 

  14. J.R. Gott, X.I. Li, Can the universe create itself? Phys. Rev. D 58, 023501 (1998) [arXiv:astro-ph/9712344]

    Google Scholar 

  15. G.W. Gibbons, J.B. Hartle, Real tunneling geometries and the large scale topology of the universe. Phys. Rev. D 42, 2458 (1990)

    Google Scholar 

  16. G.W. Gibbons, in Proceedings of the 10th Sorak School of Theoretical Physics, ed. by J.E. Kim (World Scientific, Singapore, 1992)

    Google Scholar 

  17. A. Uhlmann, On Quantization in Curved spacetime. in Proceedings of the 1979 Serpukhov International Workshop on High Energy Physics; Czech. J. Phys. B311249 (1981); B32573 (1982); Abstracts of Contributed Papers to GR9 (1980)

    Google Scholar 

  18. G.W. Gibbons, Quantization about Classical Background Metrics, in Proceedings of the 9th G.R.G. Conference, ed. by E. Schmutzer, (Deutscher, der Wissenschaften, 1981)

    Google Scholar 

  19. G.F. De Angelis, D. de Falco, G. Di Genova, Comm. Math. Phys. 103, 297 (1985)

    Google Scholar 

  20. J. Glimm, A. Jaffe, A note on reflection positivity. Lett. Math. Phys. 3, 377–378 (1979)

    Google Scholar 

  21. J. Frohlich, K. Osterwalder, E. Seiler, On virtual representations of symmetric spaces and their analytic continuation. Ann. Math. 118, 461–481 (1983)

    Google Scholar 

  22. A. Jaffe, G. Ritter, Quantum Field Theory on Curved Backgrounds. II. Spacetime Symmetries, [arXiv:0704.0052 [hep-th]]

    Google Scholar 

  23. A. Jaffe, G. Ritter, Reflection positivity and monotonicity,’ [arXiv:0705.0712 [math-ph]]

    Google Scholar 

  24. A. Jaffe, G. Ritter, Quantum field theory on curved backgrounds. I: The Euclidean functional integral. Commun. Math. Phys. 270, 545 (2007) [arXiv:hep-th/0609003]

    Google Scholar 

  25. A. Chamblin, G.W. Gibbons, A judgment on sinors. Class. Quant. Grav. 12, 2243–2248 (1995) [arXiv: gr-qc/9504048]

    Google Scholar 

  26. H.A. Chamblin, G.W. Gibbons, Topology and Time Reversal, in Proceedings of the Erice School on String Gravity and Physics at the Planck Scale, ed. by N. Sanchez, A. Zichichi [gr-qc/9510006]

    Google Scholar 

  27. W. Hamilton, Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time. Trans. Roy. Ir. Acad. 17, 293–422 (1837) Available online at http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/, last accessd 30th April 2012

  28. R. Feynman, Negative probability, in Quantum Implications—Essays in Honour of David Bohm, ed. by B.J. Hiley, F.D. Peat (Routledge & Kegan Paul, London, 1987) pp. 235–248

    Google Scholar 

  29. E.J. Flaherty, Hermitian and Kählerian Geometry in Relativity, Lecture Notes in Physics 46 (1976)

    Google Scholar 

  30. G. ’t Hooft, S. Nobbenhuis, Invariance under complex transformations and its relevance to the cosmological constant problem [gr-qc/0606076]

    Google Scholar 

  31. D.E. Kaplan, R. Sundrum, A symmetry for the Cosmological Constant [hep-hep/0505265]

    Google Scholar 

  32. S. Carlip, C. De-Witt-Morette, Where the sign of the metric makes a difference. Phys. Rev. Letts. 60, 1599–1601 (1988)

    Google Scholar 

  33. J. Hucks, Global Structure of the standard model, anomalies, and charge quantization. Phys. Rev. D 43, 2709–2717 (1991)

    Google Scholar 

  34. S. Saunders, The negative energy sea, in Philosophy of Vacuum, ed. by S. Saunders, H. Brown (Clarendon Press, Oxford, 1991)

    Google Scholar 

  35. B. Grinstein, R. Rohm, Dirac and majorana spinors on non orientable Riemann surfaces. Commun. Math. Phys. 111, 667 (1987)

    Google Scholar 

  36. A. Chamblin, G.W. Gibbons, A judgment on senors. Class. Quant. Grav. 12, 2243–2248 (1995)

    Google Scholar 

  37. J.L. Friedman, Two component spinor fields on a class of time non-orientable spacetime. Class. Quant. Grav. 12(1995)

    Google Scholar 

  38. A. Chamblin, On the obstruction to non-cliffordian pin structures. Comm. Math. Phys. 164, 56–87 (1994)

    Google Scholar 

  39. R. Erdem, A symmetry for vanishing cosmological constant in an extra dimensional model. Phys. Lett. B 621(2005) [hep-th/0410063]

    Google Scholar 

  40. R. Erdem, C.S. Un, Reconsidering extra time-like dimensions [:hep-ph/0510207]

    Google Scholar 

  41. A.D. Linde, Appendix, Rep. Prog. Phys. 47, 925 (1984)

    Google Scholar 

  42. A. Linde, Phys. Lett. B 200, 272 (1988)

    Google Scholar 

  43. A.D. Linde, Inflation, quantum cosmology and the anthropic principle, in “Science and Ultimate Reality: From Quantum to Cosmos”, honoring John Wheeler’s 90th birthday, ed. by J.D. Barrow, P.C.W. Davies, & C.L. Harper, Cambridge University Press (2003). e-Print: hep-th/0211048

    Google Scholar 

  44. G.W. Gibbons, A. Ishibashi, Topology and signature changes in braneworlds. Class. Quant. Grav. 21, 2919 (2004) [hep-th/0402024]

    Google Scholar 

  45. J. Dorling, The dimensionality of time. Amer. J. Phys. 38, 539 (1970)

    Google Scholar 

  46. G.W. Gibbons, D.A. Rasheed, Dyson pairs and zero-mass black holes. Nucl. Phys. B 476, 515 (1996) [hep-th/9604177]

    Google Scholar 

  47. M. Goldhaber, Speculations on Cosmogony. Science 124, 218–219 (1956)

    Google Scholar 

  48. F.R. Stannard, The symmetry of the time axis. Nature 211, 693–695 (1966)

    Google Scholar 

  49. M.G. Albrow, CPT conservation in the oscillating model of the universe. Nat. Phys. Sci. 241, 3 (1973)

    Google Scholar 

  50. L.S. Schulman, Opposite thermodynamic arrows of time. Phys. Rev. Lett. 83, 5419–5422 (1999)

    Google Scholar 

  51. J. Vickers, P.T. Landsberg, Thermodynamics: conflicting arrows of time. Nature 403, 609–609 (2000)

    Google Scholar 

  52. L.-K. Hua, Geometry of symmetric matrices over any field with characteristic other than two. Ann. Math. 50, 8 (1949); Causality and the Lorentz group. Proc. Roy. Soc. Lond. A 380, 487 (1982)

    Google Scholar 

  53. R.D. Schafer, An Introduction to Nonassociative Algebras, (Dover, 1995); B253, 573 (1985)

    Google Scholar 

  54. P.K. Townsend, The Jordan formulation of quantum mechanics: A review, in Supersymmetry, Supergravity, and Related Topics, ed. by F. del Aguila, J.A. de Azcárraga, L.E. Ibañez (World Scientific, Singapore, 1985)

    Google Scholar 

  55. G.W. Gibbons, Master equations and Majorana spinors. Class. Quantum Grav. 14, A155 (1997)

    Google Scholar 

  56. A.D. Alexandrov, On Lorentz transformations. Uspekhi Mat. Nauk. 5, 187 (1950)

    Google Scholar 

  57. E.C. Zeeman, Causality implies Lorentz invariance. J. Math. Phys. 5, 490–493 (1964)

    Google Scholar 

  58. H.A. Chamblin, G.W. Gibbons, Topology and Time Reversal, in Proceedings of the Erice School on String Gravity and Physics at the Planck Scale, ed. by N. Sanchez, A. Zichichi [gr-qc/9510006]

    Google Scholar 

  59. G.W. Gibbons, The Kummer configuration and the geometry of Majorana spinors, in Spinors, Twistors, Clifford Algebras and Quantum Deformations, ed. by Z. Oziewicz et al. (Kluwer, Amsterdam, 1993)

    Google Scholar 

  60. G.W. Gibbons, How the Complex Numbers Got into Physics, talk at a one day seminar on Complex Numbers in Quantum Mechanics, Oxford 3 June (1995)

    Google Scholar 

  61. M. Dubois-Violette, Complex structures and the Elie Cartan approach to the theory of Spinors, in Spinors, Twistors, Clifford Algebras and Quantum Deformations, ed. by Z. Oziewicz et al. (Kluwer, Amsterdam, 1993)

    Google Scholar 

  62. E.L. Schucking, The Higgs mass in the substandard theory [arXiv:hep-th/0702177]

    Google Scholar 

  63. G.W. Gibbons, Changes of topology and changes of signature. Int. J. Mod. Phys. D3, 61 (1994)

    Google Scholar 

  64. M.J. Duff, J. Kalkkinen, Signature reversal invariance. Nucl. Phys. B758, 161 (2006) [arXiv:hep-th/0605273]

    Google Scholar 

  65. M.J. Duff, J. Kalkkinen, Metric and coupling reversal in string theory. Nucl. Phys. B760, 64 (2007) [arXiv:hep-th/0605274]

    Google Scholar 

  66. D. Singh, N. Mobed, G. Papini, The distinction between Dirac and Majorana neutrino wave packets due to gravity and its impact on neutrino oscillations [arXiv:gr-qc/0606134]

    Google Scholar 

  67. D. Singh, N. Mobed, G. Papini, Can gravity distinguish between Dirac and Majorana neutrinos? Phys. Rev. Lett. 97, 041101 (2006) [arXiv:gr-qc/0605153]

    Google Scholar 

  68. J.F. Nieves, P.B. Pal, Comment on “Can gravity distinguish between Dirac and Majorana neutrinos?” Phys. Rev. Lett. 98, 069001 (2007) [arXiv:gr-qc/0610098]

    Google Scholar 

  69. D. Singh, N. Mobed, G. Papini, Reply to comment on “Can gravity distinguish between Dirac and Majorana neutrinos?”. Phys. Rev. Lett. 98, 069002 (2007) [arXiv:gr-qc/0611016]

    Google Scholar 

  70. B. Zumino, Normal forms of complex matrices. J. Math. Phys. 3, 1055–1057 (1962)

    Google Scholar 

  71. A. Peres, Gyro-gravitational ratio of Dirac particles. Nuovo Cim. 28, 1091 (1963)

    Google Scholar 

  72. S.M. Cahn, Fate, Logic and Time(Yale University Press, New Haven 1967)

    Google Scholar 

  73. G.H. von Wright, Time, Change and Contradiction(Cambridge University Press, Cambridge, 1969)

    Google Scholar 

  74. G. Segre, There exist consistent temporal logics admitting changes of history [arXiv: gr-qc/0612021]

    Google Scholar 

  75. J.S. Thomsen, Logical relations among the principles of statistical mechanics and thermodymanics. Phys. Rev. 91, 1263–1266 (195)

    Google Scholar 

  76. A. Aharony, Microscopic irreversibilty, unitarity and the H-theorem, in Modern Developments in Thermodynamics, ed. by B. Gal-Or (1974) pp. 95–114

    Google Scholar 

  77. A. Aharony, Y. Ne’eman, Time-reversal violation and the arrows of time. Lett. all Nuovo. Cimento. 4, 862–866 (1970)

    Google Scholar 

  78. A. Aharony, Y. Ne’eman, Time-reversal symmetry violation and the oscillating universe. Int. J. Theor. Phys. 3, 437–441 (1970)

    Google Scholar 

  79. Y. Ne’eman, Time reversal asymmetry at the fundamental level and its reflection on the problem of the arrow of time. in Modern Developments in Thermodynamicsed. by B. Gal-Or (1974) pp. 91–94

    Google Scholar 

  80. S.W. Hawking, Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976)

    Google Scholar 

  81. R.M. Wald, Quantum gravity and time reversibility. Phys. Rev. D21, 2742–2755 (1980)

    Google Scholar 

  82. D.N. Page, Is black-hole evaporation predictable? Phys. Rev. Lett. 44, 301–304 (1980)

    Google Scholar 

  83. D.J. Gross, Is quantum gravity unpredictable?, Nucl. Phys. B 236, 349 (1984)

    Google Scholar 

  84. M. Alberti, A. Uhlmann, Stochasticity and Partial Order: Doubly Stochastic Maps and Unitary Mixing(D Reidel, Dordrecht, 1982)

    Google Scholar 

  85. A.S. Eddington The Mathematical Theory of Relativity(Cambridge University Press, Cambridge, 1923) p. 25

    Google Scholar 

  86. G.W. Gibbons, A. Ishibashi, Topology and signature changes in braneworlds. Class. Quant. Grav. 21, 2919 (2004) [arXiv:hep-th/0402024]

    Google Scholar 

  87. M. Mars, J.M. M. Senovilla, R. Vera, Lorentzian and signature changing branes. Phys. Rev. D76, 044029 (2007) [arXiv:0705.3380 [hep-th]]

    Google Scholar 

  88. M. Mars, J.M.M. Senovilla, R. Vera, Is the accelerated expansion evidence of a forthcoming change of signature?, Phys. Rev. D77, 027501 (2008) [arXiv:0710.0820 [gr-qc]]

    Google Scholar 

  89. L.-K. Hua, Causality and the Lorentz group. in Proceedings of the Royal Society of London; Ser A. Math. Phys. Sci. 380, 487–488 (1982)

    Google Scholar 

  90. F.J. Yndurain, Disappearance of matter due to causality and probability violations in theories with extra timelike dimensions. Phys. Lett. B 256, 15–16 (1991)

    Google Scholar 

  91. I. Ya Arefeva, I.V. Volovich, Kaluza-Klein theories and the signature of spacetime. Phys. Lett. 164 B, 287–292 (1985)

    Google Scholar 

  92. Y. Shtanov and V. Sahni, Bouncing braneworlds, Phys. Lett. B 557, 1 (2003) [arXiv:gr-qc/0208047]

    Google Scholar 

  93. J.G. Bennett, R.L. Brown, M.W. Thring, Unified field theory in a curvature-free five-dimensional manifold. Proc. Roy. Soc. A 198, 39–61 (1949)

    Google Scholar 

  94. I. Bars, C. Kounas, Theories with two times. Phys. Lett. B 402, 25 (1997) [arXiv:hep-th/9703060]

    Google Scholar 

  95. E.A.B. Cole, Prediction of dark matter using six-dimensional special relativity. Nuovo. Cim. 115 B, 1149 (2000)

    Google Scholar 

  96. E.A.B. Cole, I.M. Starr, Detection of light from moving objects in six-dimensional special relativity, Nuovo. Cim. 105B, 1091 (1990)

    Google Scholar 

  97. J.B. Boyling, E.A.B. Cole, Six-dimensional Dirac equation. Int. J. Theor. Phys. 32, 801 (1993)

    Google Scholar 

  98. E.A.B. Cole, Six-dimensional relativity, in Nagpur 1984, Proceedings, On Relativity Theory, pp. 178–195

    Google Scholar 

  99. E.A.B. Cole, A proposed observational test of six-dimensional relativity. Phys. Lett. A 95, 282 (1983)

    Google Scholar 

  100. E.A.B. Cole, New electromagnetic fields in six-dimensional special relativity. Nuovo. Cim. A 60, 1 (1980)

    Google Scholar 

  101. E.A.B. Cole, Center-of-mass frames in six-dimensional special relativity. Lett. Nuovo. Cim. 28, 171 (1980)

    Google Scholar 

  102. E.A.B. Cole, Particle decay in six-dimensional relativity. J. Phys. A 13, 109 (1980)

    Google Scholar 

  103. E.A.B. Cole, Emission and absorption of Tachyons in six-dimensional relativity. Phys. Lett. A 75, 29 (1979)

    Google Scholar 

  104. E.A.B. Cole, Subluminal and superluminal transformations in six-dimensional special relativity, Nuovo. Cim. B 44, 157 (1978)

    Google Scholar 

  105. E.A.B. Cole, Superluminal transformations using either complex space-time or real space-time symmetry. Nuovo Cim. A 40, 171 (1977)

    Google Scholar 

  106. B. Kostant, The Vanishing of Scalar Curvature and the Minimal Representation of SO(4, 4) in Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory: Actes du colloque en l’honneur de Jacques DixmierBirkhauser, Basel (1990) 85–124

    Google Scholar 

  107. V. Guillemin, S. Sternberg, Variations on a theme of Kepler. AMS Collo. Publ. 42, 72–73 (1990)

    Google Scholar 

  108. W.R. Biedrzycki, Einstein’s equations with and embedding-dependent energy-momentum tensor for the compactified Minkowski time space and their relationship to the conformal action of SO(4, 4) on S 3×S 3. Proc. Natl. Acad. Sci. (US) 88, 2176–2178 (1991)

    Google Scholar 

  109. W.R. Biedrzycki, Spinors over a cone, Dirac operator, and representations of Spin(4, 4). J. Funct. Anal. 113, 36–64 (1993)

    Google Scholar 

  110. A.K. Das, E. Sezgin, Z. Khviengia, Selfduality in (3 + 3)-dimensions and the Kp equation. Phys. Lett. B 289, 347 (1992) [arXiv:hep-th/9206076]

    Google Scholar 

  111. S. Ferrara, Spinors, superalgebras and the signature of space-time [arXiv:hep-th/0101123]

    Google Scholar 

  112. L. Dabrowski, Group Actions on Spinors(Bibilopolis, Naples, 1988)

    Google Scholar 

  113. G.B. Halsted, Four-fold space and two-fold time. Science. 19, 319 (1892)

    Google Scholar 

  114. J.B. Hartle, D.M. Witt, Gravitational theta states and the wave function of the universe, Phys. Rev. D 37, 2833 (1988)

    Google Scholar 

  115. N. Woodhouse, Geometric quantization and the bogolyubov transformation, Proc. Roy. Soc. Lond. A 378, 119 (1981)

    Google Scholar 

  116. A. Aguirre, S. Gratton, Inflation without a beginning: A null boundary proposal. Phys. Rev. D 67, 083515 (2003) [arXiv:gr-qc/0301042]

    Google Scholar 

  117. A.S. Wightman, On the localizability of quantum mechanical systems. Rev. Mod. Phys. 34, 845–872 (1962)

    Google Scholar 

  118. W.G. Unruh, R.M. Wald, Time and the interpretation of canonical quantum gravity. Phys. Rev. D 40, 2598 (1989)

    Google Scholar 

  119. R. Giannitrapani, On a Time Observable in Quantum Mechanics [arXiv:quant-ph/9611015]

    Google Scholar 

  120. B.S. Kay, The Principle of locality and quantum field theory on (nonglobally hyperbolic) curved space-times.” Rev. Math. Phys. SI1, 167 (1992)

    Google Scholar 

Download references

Acknowledgements

I would like to thank, Thibault Damour, Stanley Deser, Marc Henneaux and John Taylor for helpful discussions and suggestions about the material in Section 11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Gibbons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gibbons, G.W. (2012). The Emergent Nature of Time and the Complex Numbers in Quantum Cosmology. In: Mersini-Houghton, L., Vaas, R. (eds) The Arrows of Time. Fundamental Theories of Physics, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23259-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23259-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23258-9

  • Online ISBN: 978-3-642-23259-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics