Skip to main content

Fundamental Loss of Quantum Coherence from Quantum Gravity

  • Chapter
  • First Online:
The Arrows of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 172))

  • 1928 Accesses

Abstract

We discuss the fundamental loss of unitarity that appears in quantum mechanics when one uses physically realistic devices to measure time and space. The effect is independent of any interaction with the environment and appears in addition to any usual environmental decoherence. We discuss the conceptual and potential experimental implications of this process of decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Gambini, R. Porto, J. Pullin, Class. Quant. Grav. 21, L51 (2004) [arXiv:gr-qc/0305098]

    Google Scholar 

  2. R. Gambini, R. Porto, J. Pullin, New J. Phys. 6, 45 (2004) [arXiv:gr-qc/0402118]

    Google Scholar 

  3. R. Gambini, R. Porto, J. Pullin, Braz. J. Phys. 35, 266 (2005) [arXiv:gr-qc/0501027]

    Google Scholar 

  4. R. Gambini, R. Porto, J. Pullin, Gen. Rel. Grav. 39, 1143 (2007) [arXiv:gr-qc/0603090]

    Google Scholar 

  5. See for instance, J. Ellis, J. Hagelin, D.V. Nanopoulos, M. Srednicki, Nucl. Phys. B241, 381 (1984); T. Banks, M.E. Peskin, L. Susskind, Nucl. Phys. B244, 125 (1984)

    Google Scholar 

  6. G.J. Milburn, Phys. Rev. A44, 5401 (1991)

    Google Scholar 

  7. I. Egusquiza, L. Garay, J. Raya, Phys. Rev. A59, 3236 (1999) [arXiv:quant-ph/9811009]

    Google Scholar 

  8. C. Kiefer, T. Singh, Phys. Rev. D44, 1061 (1991)

    Google Scholar 

  9. D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 76, 1796 (1996); M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 76, 1800 (1996); R. Bonifacio, S. Olivares, P. Tombesi, D. Vitali, Phys. Rev. A61, 053802 (2000)

    Google Scholar 

  10. E. Wigner, Rev. Mod. Phys. 29, 255 (1957)

    Google Scholar 

  11. Y.J. Ng, H. van Dam, Ann. N. Y. Acad. Sci. 755, 579 (1995) [arXiv:hep-th/9406110]; Mod. Phys. Lett. A 9, 335 (1994)

    Google Scholar 

  12. Y.J. Ng, H. van Dam, Class. Quant. Grav. 20, 393 (2003) [arXiv:gr-qc/0209021]

    Google Scholar 

  13. J.C. Baez, S.J. Olson, Class. Quant. Grav. 19, L121 (2002) [arXiv:gr-qc/0201030]

    Google Scholar 

  14. R. Gambini, R.A. Porto, J. Pullin, Phys. Rev. Lett. 93, 240401 (2004) [arXiv:hep-th/0406260]

    Google Scholar 

  15. See for instance, A. Andre, A. Sorensen, M. Lukin, Phys. Rev. Lett 92, 230801 (2004) [arXiv:quant-ph/0401130]

    Google Scholar 

  16. R. Gambini, R.A. Porto, J. Pullin, Int. J. Mod. Phys. D 15, 2181 (2006) [arXiv:gr-qc/0611148]

    Google Scholar 

  17. S. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Google Scholar 

  18. See for instance, S. Giddings, L. Thorlacius, in Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, ed. by E. Kolb (World Scientific, Singapore, 1996) [arXiv:astro-ph/9412046]; for more recent references see S.B. Giddings, M. Lippert, [arXiv:hep-th/0402073]; D. Gottesman, and J. Preskill, J. High Energ. Phys. 0403, 026 (2004) [arXiv:hep-th/0311269]

    Google Scholar 

  19. N. Iizuka, J. Polchinski, JHEP 0810, 028 (2008) [arXiv:0801.3657 [hep-th]]

    Google Scholar 

  20. M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2004) [arXiv:quant-ph/0312059]

    Google Scholar 

  21. R. Omnès, The interpretation of quantum mechanics, Princeton Series in Physics (Princeton, NJ, 1994)

    Google Scholar 

  22. R. Gambini and J. Pullin, Found. Phys. 37, 1074 (2007)

    Google Scholar 

  23. R. Gambini, J. Pullin, in Minkowski spacetime, a hundred years later, V. Petkov (ed.), Springer, New York (2010) [arXiv:0801.2564 [gr-qc]]

    Google Scholar 

  24. S. Lloyd, Nature. 406, 1047 (2000)

    Google Scholar 

  25. N. Margolus, L. Levitin, Physica. D120, 188 (1998)

    Google Scholar 

  26. R. Gambini, R. Porto, J. Pullin, in Gravity, Astrophysics and Strings at the Black Sea, ed. by P. Fiziev, M. Todorov (St. Kliment Ohridski Press, Sofia, 2006) [arXiv:quant-ph/0507262]

    Google Scholar 

  27. R. Bonifacio, Nuo. Cim. D114, 473 (1999)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants NSF-PHY0650715, and by funds of the Horace C. Hearne Jr. Institute for Theoretical Physics, PEDECIBA (Uruguay), FQXi, the University of California and CCT-LSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Gambini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gambini, R., Porto, R.A., Pullin, J. (2012). Fundamental Loss of Quantum Coherence from Quantum Gravity. In: Mersini-Houghton, L., Vaas, R. (eds) The Arrows of Time. Fundamental Theories of Physics, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23259-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23259-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23258-9

  • Online ISBN: 978-3-642-23259-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics