Skip to main content

Can the Arrow of Time Be Understood from Quantum Cosmology?

  • Chapter
  • First Online:
The Arrows of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 172))

Abstract

I address the question whether the origin of the observed arrow of time can be derived from quantum cosmology. After a general discussion of entropy in cosmology and some numerical estimates, I give a brief introduction into quantum geometrodynamics and argue that this may provide a sufficient framework for studying this question. I then show that a natural boundary condition of low initial entropy can be imposed on the universal wave function. The arrow of time is then correlated with the size of the Universe and emerges from an increasing amount of decoherence due to entanglement with unobserved degrees of freedom. Remarks are also made concerning the arrow of time in multiverse pictures and scenarios motivated by dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The situation is different for an isolated quantum gravitational system such as a black hole; there, the semiclassical time of the rest of the Universe enters the description [13].

References

  1. H.D. Zeh, The Physical Basis of the Direction of Time, 5th edn. (Springer, Berlin, 2007)

    Google Scholar 

  2. H.D. Zeh, Open questions regarding the arrow of time (2012). Contribution to this volume

    Google Scholar 

  3. A. De Simone, A.H. Guth, A. Linde, M. Noorbala, M.P. Salem, A. Vilenkin, Boltzmann brains and the scale-factor cutoff measure of the multiverse Phys. Rev. D 82, 063520 (2010) [arXiv:0808.3778v1 [hep-th]]

    Google Scholar 

  4. C.A. Egan, C.H. Lineweaver, A larger estimate of the entropy of the universe Astrophys. J. 710, 1825–1834 (2010) [arXiv:0909.3983v1 [astro-ph.CO]]

    Google Scholar 

  5. A. Linde, V. Vanchurin, How many universes are in the multiverse? Phys. Rev. D 81, 083525 (2010) [arXiv:0910.1589v1 [hep-th]]

    Google Scholar 

  6. R. Penrose, Time-asymmetry and quantum gravity. In Quantum Gravity, vol. 2, ed. by C.J. Isham, R. Penrose, D.W. Sciama (Clarendon Press, Oxford, 1981), pp. 242–272

    Google Scholar 

  7. G.W. Gibbons, S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977)

    Google Scholar 

  8. R. Penrose, Black holes, quantum theory and cosmology. J. Phys. Conf. Ser. 174, 012001 (2009)

    Google Scholar 

  9. C. Kiefer, Quantum Gravity, 2nd edn (Oxford University Press, Oxford, 2007)

    Google Scholar 

  10. M. Albers, C. Kiefer, M. Reginatto, Measurement analysis and quantum gravity. Phys. Rev. D 78, 064051 (2008)

    Google Scholar 

  11. C. Kiefer, Quantum geometrodynamics: whence, whither? Gen. Relativ. Gravit. 41, 877–901 (2009); C. Kiefer, Does time exist in quantum gravity? (2009) [arXiv:0909.3767v1 [gr-qc]]

    Google Scholar 

  12. B.S. DeWitt, Quantum theory of Gravity. I. The canonical theory. Phys. Rev. 160, 1113–1148 (1967)

    Google Scholar 

  13. C. Kiefer, J. Marto, and P.V. Moniz (2009): Indefinite oscillators and black-hole evaporation. Ann. Phys. (Berlin) 18, 722–735.

    Google Scholar 

  14. J.J. Halliwell, S.W. Hawking, Origin of structure in the universe. Phys. Rev. D 31, 1777–1791 (1985)

    Google Scholar 

  15. C. Kiefer, Continuous measurement of minisuperspace variables by higher multipoles. Class. Quantum Grav. 4, 1369–1382 (1987)

    Google Scholar 

  16. H.D. Zeh, Emergence of classical time from a universal wave function. Phys. Lett. A 116, 9–12 (1986)

    Google Scholar 

  17. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn (Springer, Berlin, 2003)

    Google Scholar 

  18. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682–685 (1979)

    Google Scholar 

  19. C. Kiefer, I. Lohmar, D. Polarski, A.A. Starobinsky, Pointer states for primordial fluctuations in inflationary cosmology. Class. Quantum Grav. 24, 1699–1718 (2007); C. Kiefer, D. Polarski, Why do cosmological perturbations look classical to us? Adv. Sci. Lett. 2, 164–173 (2009) [arXiv:0810.0087v2 [astro-ph]]

    Google Scholar 

  20. C. Kiefer, Entropy of gravitational waves and primordial fluctuations. In Cosmology and Particle Physics, ed. by J. Garcia-Bellido, R. Durrer, M. Shaposhnikov (American Institute of Physics, New York, 2001), pp. 499–504

    Google Scholar 

  21. R. Holman, L. Mersini-Houghton, Why the universe started from a low entropy state. Phys. Rev. D 74, 123510 (2006)

    Google Scholar 

  22. C. Kiefer, H.D. Zeh, Arrow of time in a recollapsing quantum universe. Phys. Rev. D 51, 4145–4153 (1995)

    Google Scholar 

  23. C. Kiefer, B. Sandhöfer, Quantum cosmology. In Beyond the Big Bang, ed. by R. Vaas (Springer, Berlin, 2012), [arXiv:0804.0672v2 [gr-qc]]

    Google Scholar 

  24. M. Novello, S.E.P. Bergliaffa, Bouncing cosmologies. Phys. Rep. 463, 127–213 (2008)

    Google Scholar 

  25. M. Bojowald, A momentous arrow of time (2012). Contribution to this volume

    Google Scholar 

  26. G. Hinshaw et al., Five-year Wilkinson microwave anisotropy probe (WMAP) observations: Data processing, sky maps, and basic results. Astrophys. J. Suppl. 180, 225–245 (2009)

    Google Scholar 

  27. K.H. Geyer, Geometrie der Raum-Zeit der Maßbestimmung von Kottler, Weyl und Trefftz. Astron. Nachr. 301, 135–149 (1980)

    Google Scholar 

Download references

Acknowledgements

I thank Max Dörner and Tobias Guggenmoser for a careful reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Kiefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kiefer, C. (2012). Can the Arrow of Time Be Understood from Quantum Cosmology?. In: Mersini-Houghton, L., Vaas, R. (eds) The Arrows of Time. Fundamental Theories of Physics, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23259-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23259-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23258-9

  • Online ISBN: 978-3-642-23259-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics