Skip to main content

Efficient Computation of a Hierarchy of Discrete 3D Gradient Vector Fields

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization II

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

This paper introduces a novel combinatorial algorithm to compute a hierarchy of discrete gradient vector fields for three-dimensional scalar fields. The hierarchy is defined by an importance measure and represents the combinatorial gradient flow at different levels of detail. The presented algorithm is based on Forman’s discrete Morse theory, which guarantees topological consistency and algorithmic robustness. In contrast to previous work, our algorithm combines memory and runtime efficiency. It thereby lends itself to the analysis of large data sets. A discrete gradient vector field is also a compact representation of the underlying extremal structures – the critical points, separation lines and surfaces. Given a certain level of detail, an explicit geometric representation of these structures can be extracted using simple and fast graph algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. CoRR abs/1001.1269 (2010)

    Google Scholar 

  2. Cayley, A.: On contour and slope lines. Lond. Edinb. Dublin Phil. Mag. J. Sci. 18, 264–268 (1859)

    Google Scholar 

  3. Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Discrete Math. 217(1-3), 101–113 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gröller, M.E., Glaeser, G., Kastner, J.: Stagbeetle. www.cg.tuwien.ac.at/research/publications/2005/dataset-stagbeetle/

  7. Gyulassy, A.: Combinatorial construction of Morse-Smale complexes for data analysis and visualization. Ph.D. thesis, University of California, Davis (2008)

    Google Scholar 

  8. Gyulassy, A., Bremer, P.T., Pascucci, V., Hamann, B.: Practical Considerations in Morse-Smale Complex Computation, chap. 6, pp. 67–78. Springer, Berlin (2009)

    Google Scholar 

  9. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge, U.K. (2002)

    MATH  Google Scholar 

  10. Joswig, M., Pfetsch, M.E.: Computing optimal Morse matchings. SIAM J. Discret. Math. 20(1), 11–25 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lewiner, T.: Geometric discrete Morse complexes. Ph.D. thesis, Dept. of Mathematics, PUC-Rio (2005)

    Google Scholar 

  13. Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221–233 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Maxwell, J.C.: On hills and dales. Lond. Edinb. Dublin Phil. Mag. J. Sci. 40, 421–425 (1870)

    Google Scholar 

  15. Milnor, J.: Topology from the differentiable viewpoint. University Press, Virginia (1965)

    MATH  Google Scholar 

  16. Reininghaus, J., Günther, D., Hotz, I., Prohaska, S., Hege, H.C.: TADD: A computational framework for data analysis using discrete Morse theory. In: Mathematical Software – ICMS 2010, pp. 198–208. Springer, Berlin (2010)

    Google Scholar 

  17. Reininghaus, J., Kasten, J., Weinkauf, T., Hotz, I.: Combinatorial feature flow fields: Tracking critical points in discrete scalar fields. Tech. Rep. 11-02, Zuse Institute Berlin (2011)

    Google Scholar 

  18. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011). doi:10.1109/TPAMI.2011.95

    Article  Google Scholar 

  19. Röttger, S.: The volume library. http://www9.informatik.uni-erlangen.de/External/vollib/

  20. Stalling, D., Steinke, T.: Visualization of Vector Fields in Quantum Chemistry. Zuse Institute, Berlin (1996)

    Google Scholar 

  21. Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Saddle Connectors - an approach to visualizing the topological skeleton of complex 3D vector fields. In: Proceedings IEEE Visualization 2003, pp. 225–232. Seattle, U.S.A. (2003)

    Google Scholar 

  22. Weinkauf, T.: Extraction of topological structures in 2d and 3d vector fields. Ph.D. thesis, University Magdeburg and Zuse Institute Berlin (2008)

    Google Scholar 

  23. Weinkauf, T., Gingold, Y., Sorkine, O.: Topology-based smoothing of 2D scalar fields with { C}1-continuity. Computer Graphics Forum (Proc. EuroVis) 29(3), 1221–1230 (2010)

    Google Scholar 

  24. Zomorodian, A.: Computing and comprehending topology: Persistence and hierarchical Morse complexes. Ph.D. thesis, Urbana, Illinois (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Max-Planck Institute of Biochemistry, Martinsried, and the DFG Emmy-Noether research program. The authors would like to thank Daniel Baum, Ingrid Hotz, Jens Kasten, Michael Koppitz, Falko Marquardt, and Jan Sahner for many fruitful discussions on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Günther, D., Reininghaus, J., Prohaska, S., Weinkauf, T., Hege, HC. (2012). Efficient Computation of a Hierarchy of Discrete 3D Gradient Vector Fields. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds) Topological Methods in Data Analysis and Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23175-9_2

Download citation

Publish with us

Policies and ethics