Skip to main content

From Microelectronics to Nanoelectronics

  • Chapter
  • First Online:
Chips 2020

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

We highlight key events in over 100 years of electronic amplifiers and their incorporation in computers and communication in order to appreciate the electron as man’s most powerful token of information. We recognize that it has taken about 25 years or almost a generation for inventions to make it into new products, and that, within these periods, it still took major campaigns, like the Sputnik effect or what we shall call 10× programs, to achieve major technology steps. From Lilienfeld’s invention 1926 of the solid-state field-effect triode to its realization 1959 in Kahng’s MOS field-effect transistor, it took 33 years, and this pivotal year also saw the first planar integrated silicon circuit as patented by Noyce. This birth of the integrated microchip launched the unparalleled exponential growth of microelectronics with many great milestones. Among these, we point out the 3D integration of CMOS transistors by Gibbons in 1979 and the related Japanese program on Future Electron Devices (FED). The 3D domain has finally arrived as a broad development since 2005. Consecutively, we mark the neural networks on-chip of 1989 by Mead and others, now, 20 years later, a major project by DARPA. We highlight cooperatives like SRC and SEMATECH, their impact on progress and more recent nanoelectronic milestones until 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Lieben R.: Kathodenstrahlenrelais. German Patent No. 179807. Issued 4 March 1906

    Google Scholar 

  2. De Forest L.: Device for amplifying feeble electrical currents. US Patent No. 841387, filed 25 Oct 1906. Issued 15 Jan 1907

    Google Scholar 

  3. Lilienfeld J.E.: Method and apparatus for controlling electric currents. US Patent No. 1745175, filed 8 Oct 1926. Issued 18 Jan 1930

    Google Scholar 

  4. Hilsch R, Pohl R.W.: Steuerung von Elektronenströmen mit einem Dreielektrodenkristall und ein Modell einer Sperrschicht [Control of electron currents with a three-electrode crystal and a model of a blocking layer]. Z. Phys. 111, 399 (1938)

    Article  ADS  Google Scholar 

  5. Shockley W.: The path to the conception of the junction transistor. IEEE Trans. Electron Dev. 23, 597 (1976)

    Article  Google Scholar 

  6. See “The Silicon Engine” at www.computerhistory.org/semiconductor/. Accessed Feb 2011

  7. Atalla M.M.: Stabilisation of silicon surfaces by thermally grown oxides. Bell Syst. Tech. J. 38, 749 (1959)

    Google Scholar 

  8. Kahng D.: Electric field controlled semiconductor device. US Patent No. 3102230, filed 31 May 1960. Issued 27 Aug 1963

    Google Scholar 

  9. Hoerni J.A.: Method of manufacturing semiconductor devices. US Patent No. 3025589, filed 1 May 1959. Issued 20 March 1962

    Google Scholar 

  10. Noyce R.N.: Semiconductor device-and-lead structure. US Patent No. 2981877, filed 30 July 1959. Issued 25 April 1961

    Google Scholar 

  11. Saxena A.N.: Invention of Integrated Circuits – Untold Important Facts. World Scientific, Singapore (2009)

    Book  Google Scholar 

  12. Wanlass F.M.: Low stand-by power complementary field effect circuitry. US Patent No. 3356858, filed 18 June 1963. Issued 5 Dec 1967

    Google Scholar 

  13. Wanlass F.M, Sah C.T.: Nanowatt logic using field-effect metal-oxide semiconductor triodes. IEEE ISSCC (International Solid-State Circuits Conference) 1963, Dig. Tech. Papers, pp. 32–33

    Google Scholar 

  14. Wallmark J.T, Johnson H (eds.): Field-Effect Transistors. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

  15. Moore G.: Cramming more components onto integrated circuits. Electron Mag. 38(8), 114–117 (1965)

    Google Scholar 

  16. Moore G.: Progress in digital integrated electronics. IEEE IEDM (International Electron Devices Meeting) 1975, Tech. Dig., pp. 11–13

    Google Scholar 

  17. Petritz R.L.: Current status of large-scale integration technology. In: Proceedings of AFIPS Fall Joint Computer Conference, Vyssotsky, Nov 1967, pp. 65–85

    Google Scholar 

  18. Dennard R.H, Gaensslen F.H, Yu H.N, Rideout V.L, Bassous E, LeBlanc A.R.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256 (1974)

    Article  Google Scholar 

  19. Gibbons J.F, Lee K.F.: One-gate-wide CMOS inverter on laser-recrystallised polysilicon. IEEE Electron Dev. Lett. 1, 117 (1980)

    Article  Google Scholar 

  20. Kataoka S.: Three-dimensional integrated sensors. IEEE IEDM (International Electron Devices Meeting) 1986, Dig. Tech. Papers, pp. 361–364

    Google Scholar 

  21. Mead C, Conway L.: Introduction to VLSI Systems. Addison-Wesley, Reading (1979)

    Google Scholar 

  22. Senda K, et al.: Smear-less SOI image sensor. IEEE IEDM (International Electron Devices Meeting) 1986, Dig. Tech. Papers, pp. 369–372

    Google Scholar 

  23. Mead C, Ismail M.: Analog VLSI Implementation of Neural Systems, ISBN 978-0-7923-9040-4, Springer (1989).

    Book  MATH  Google Scholar 

  24. Neusser S, Nijhuis J, Spaanenburg L, Hoefflinger B.: Neurocontrol for lateral vehicle guidance. IEEE Micro. 13(1), 57 (1993)

    Article  Google Scholar 

  25. www.ITRS.net/. Accessed Feb 2011

  26. Likharev K.K.: IEEE Trans. Magn. 23, 1142 (1987)

    Article  ADS  Google Scholar 

  27. Bauer M, et al.: A multilevel-cell 32 Mb flash memory. IEEE ISSCC (International Solid-State Circuits Conference), Dig. Tech. Papers, 1995, pp. 132–133

    Google Scholar 

  28. Lee K et al.: Conference on 3D Architectures for Semiconductor Integration and Packaging, San Francisco, Oct–Nov 2006

    Google Scholar 

  29. Geim A.K, Novoselov K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  30. Wang Q, Shang D.S, Wu Z.H, Chen L.D, Li X.M.: “Positive” and “negative” electric-pulse-induced reversible resistance switching effect in Pr0.7Ca0.3MnO3 films. Appl. Phys. A 86, 357 (2007)

    ADS  Google Scholar 

  31. Chua L.O.: Memristor – the missing circuit element. IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hoefflinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoefflinger, B. (2011). From Microelectronics to Nanoelectronics. In: Hoefflinger, B. (eds) Chips 2020. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23096-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23096-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22399-0

  • Online ISBN: 978-3-642-23096-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics