Skip to main content

Non-anticoagulant Effects of Heparin: An Overview

  • Chapter
  • First Online:
Heparin - A Century of Progress

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 207))

Abstract

Heparin has long been known to possess biological effects that are unrelated to its anticoagulant activity. In particular, much emphasis has been placed upon heparin, or novel agents based upon the heparin template, as potential anti-inflammatory agents. Moreover, heparin has been reported to possess clinical benefit in humans, including in chronic inflammatory diseases and cancer, that are over and above the expected effects on blood coagulation and which in many cases are entirely separable from this role. This chapter aims to provide an overview of the non-anticoagulant effects that have been ascribed to heparin, from those involving the binding and inhibition of specific mediators involved in the inflammatory process to effects in whole system models of disease, with reference to the effects of heparin that have been reported to date in human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrink M, Grujic M, Pejler G (2004) Serglycin is essential for maturation of mast cell secretory granule. J Biol Chem 279:40897–40905

    Article  PubMed  CAS  Google Scholar 

  • Ahmed T, Abraham WM, D’Brot J (1992) Effects of inhaled heparin on immunologic and nonimmunologic bronchoconstrictor responses in sheep. Am Rev Respir Dis 145:566–570

    PubMed  CAS  Google Scholar 

  • Ahmed T, Garrigo J, Danta I (1993) Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 329:90–95

    Article  PubMed  CAS  Google Scholar 

  • Ahmed T, Syriste T, Mendelssohn R, Sorace D, Mansour E, Lansing M, Abraham WM, Robinson MJ (1994) Heparin prevents antigen-induced airway hyperresponsiveness: interference with IP3-mediated mast cell degranulation? J Appl Physiol 76:893–901

    Article  PubMed  CAS  Google Scholar 

  • Ahmed T, Campo C, Abraham MK, Molinari IF, Abraham WM, Ashkin D, Syriste T, Andersson LO, Svahn CM (1997) Inhibition of antigen-induced acute bronchoconstriction, airway hyperresponsiveness, and mast cell degranulation by a nonanticoagulant heparin – comparison with a low molecular weight heparin. Am J Respir Crit Care Med 155:1848–1855

    PubMed  CAS  Google Scholar 

  • Aki EA, van Doormaal FF, Barba M, Kamath G, Kim SY, Kuipers S, Middeldorp S, Yosuico V, Dickinson HO, Schünemann HJ (2007) Parenteral anticoagulation for prolonging survival in patients with cancer who have no other indication for anticoagulation. Cochrane Database Syst Rev 3:CD006652

    Google Scholar 

  • Alonso DF, Bertolesi GE, Farias EF, Eijan AM, Joffe EBD, De Cidre LL (1996) Antimetastatic effects associated with anticoagulant properties of heparin and chemically modified heparin species in a mouse mammary tumor model. Oncol Rep 3:219–222

    PubMed  CAS  Google Scholar 

  • Amirkhosravi A, Meyer T, Amaya M, Davila M, Mousa SA, Robson T, Francis JL (2007) The role of tissue factor pathway inhibitor in tumor growth and metastasis. Semin Thromb Hemost 33:643–652

    Article  PubMed  CAS  Google Scholar 

  • Antczak M, Kuna P (1995) Heparin inhibits allergen induced airway response in asthmatics. Results of a double blind placebo-controlled, crossover study. J Allergy Clin Immunol 95:386 (Abstract)

    Google Scholar 

  • Baer CL, Bennett WM, Folwick DA, Erickson RS (1996) Effectiveness of a jet injection system in administering morphine and heparin to healthy adults. Am J Crit Care 5:42–48

    PubMed  CAS  Google Scholar 

  • Bai S, Ahsan F (2009) Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm Res 26:539–548

    Article  PubMed  CAS  Google Scholar 

  • Bai S, Ahsan F (2010) Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J Pharm Sci 99:4554–4564

    Article  PubMed  CAS  Google Scholar 

  • Bai S, Gupta V, Ahsan F (2010) Inhalable lactose-based dry powder formulations of low molecular weight heparin. J Aerosol Med Pulm Drug Deliv 23:97–104

    Article  PubMed  CAS  Google Scholar 

  • Bar-Ner M, Eldor A, Wasserman L, Matzner Y, Cohen IR, Fuks Z, Vlodavsky I (1987) Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood 70:551–557

    PubMed  CAS  Google Scholar 

  • Basche M, Gustafson DL, Holden SN, O'Bryant CL, Gore L, Witta S, Schultz MK, Morrow M, Levin A, Creese BR, Kangas M, Roberts K, Nguyen T, Davis K, Addison RS, Moore JC, Eckhardt SG (2006) A phase I biological and pharmacologic study of the heparanase inhibitor PI-88 in patients with advanced solid tumors. Clin Cancer Res 12:5471–5480

    Article  PubMed  CAS  Google Scholar 

  • Baughman RA, Kapoor SC, Agarwal RK, Kisicki J, Catella-Lawson F, FitzGerald GA (1998) Oral delivery of anticoagulant doses of heparin. A randomized, double-blind, controlled study in humans. Circulation 98:1610–1615

    PubMed  CAS  Google Scholar 

  • Bazzoni G, Nuñez AB, Mascellani G, Bianchini P, Dejana E, Del Maschio A (1992) Effect of heparin, dermatan sulfate, and related oligo-derivatives on human polymorphonuclear leukocyte functions. J Lab Clin Med 121:268–275

    Google Scholar 

  • Becker M, Menger MD, Lehr HA (1994) Heparin-released superoxide dismutase inhibits postischemic leukocyte adhesion to venular endothelium. Am J Physiol 267:H925–930

    PubMed  CAS  Google Scholar 

  • Bendstrup KE, Chambers CB, Jensen JI, Newhouse MT (1999) Lung deposition and clearance of Inhaled 99mTc-heparin in healthy volunteers. Am J Respir Crit Care Med 160:1653–1658

    PubMed  CAS  Google Scholar 

  • Berkowitz SD, Marder VJ, Kosutic G, Baughman RA (2003) Oral heparin administration with a novel drug delivery agent (SNAC) in healthy volunteers and patients undergoing elective total hip arthroplasty. J Thromb Haemost 1:1914–1919

    Article  PubMed  CAS  Google Scholar 

  • Bono F, Rigon P, Lamarche I, Savi P, Salel V, Herbert J-M (1997) Heparin inhibits the binding of basic fibroblast growth factor to cultured human aortic smooth-muscle cells. Biochem J 326:661–668

    PubMed  CAS  Google Scholar 

  • Borsig L (2010) Antimetastatic activities of heparins and modified heparins: experimental evidence. Thromb Res 125:S66–S71

    Article  PubMed  Google Scholar 

  • Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A (2001) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 98:3352–3357

    Article  PubMed  CAS  Google Scholar 

  • Bowler SD, Smith SM, Laverombe PS (1993) Heparin inhibits the immediate response to antigen in the skin and lungs of allergic subjects. Am Rev Respir Dis 147:160–163

    Article  PubMed  CAS  Google Scholar 

  • Brown RA, Lever R, Jones NA, Page CP (2003) Effects of heparin and related molecules upon neutrophil aggregation and elastase release in vitro. Br J Pharmacol 139:845–853

    Article  PubMed  CAS  Google Scholar 

  • Brown RA, Allegra L, Matera MG, Page CP, Cazzola M (2006) Additional clinical benefit of enoxaparin in COPD patients receiving salmeterol and fluticasone propionate in combination. Pulm Pharmacol Ther 19:419–424

    Article  PubMed  CAS  Google Scholar 

  • Brunnee T, Reddigan SR, Shibayama Y, Kaplan AP, Silverberg M (1997) Mast cell derived heparin activates the contact system: a link to kinin generation in allergic reactions. Clin Exp Allergy 27:653–663

    Article  PubMed  CAS  Google Scholar 

  • Cancio LC (2009) Airway management and smoke inhalation injury in the burn patient. Clin Plast Surg 36:555–567

    Article  PubMed  Google Scholar 

  • Carr J (1979) The anti-inflammatory action of heparin: Heparin as an antagonist to histamine, bradykinin and prostaglandin E1. Thromb Res 16:507–516

    Article  PubMed  CAS  Google Scholar 

  • Casu B, Vlodavsky I, Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36:195–203

    Article  PubMed  CAS  Google Scholar 

  • Chande N, MacDonald JW, Macdonald JK (2008) Unfractionated or low-molecular weight heparin for induction of remission in ulcerative colitis. Cochrane Database Syst Rev 2:CD006774

    Google Scholar 

  • Chen G, Wang D, Vikramadithyan R, Yagyu H, Saxena U, Pillarisetti S, Goldberg IJ (2004) Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry 43:4971–4977

    Article  PubMed  CAS  Google Scholar 

  • Clowes AW, Karnovsky MJ (1977) Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265:625–626

    Article  PubMed  CAS  Google Scholar 

  • Cole GJ, Loewy A, Glaser L (1986) Neuronal cell–cell adhesion depends on interactions of N-CAM with heparin-like molecules. Nature 320:445–447

    Article  PubMed  CAS  Google Scholar 

  • Cribbs RK, Luquette MH, Besner GE (1998) Acceleration of partial-thickness burn wound healing with topical application of heparin-binding EGF-like growth factor (HB-EGF). J Burn Care Rehabil 19:95–101

    Article  PubMed  CAS  Google Scholar 

  • Cribbs RK, Harding PA, Luquette MH, Besner GE (2002) Endogenous production of heparin-binding EGF-like growth factor during murine partial-thickness burn wound healing. J Burn Care Rehabil 23:116–125

    Article  PubMed  Google Scholar 

  • Darien BJ, Fareed J, Centgraf KS, Hart AP, MacWilliams PS, Clayton MK, Wolf H, Kruse-Elliott KT (1998) Low molecular weight heparin prevents the pulmonary hemodynamic and pathomorphologic effects of endotoxin in a porcine acute lung injury model. Shock 9:274–281

    Article  PubMed  CAS  Google Scholar 

  • Davids H, Ahmed A, Oberholster A, van der Westhuizen C, Mer M, Havlik I (2010) Endogenous heparin levels in the controlled asthmatic patient. S Afr Med J 100:307–308

    PubMed  Google Scholar 

  • De Lisser HM, Horng CY, Newman PJ, Muller WA, Buck CA, Albelda SM (1993) Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans. J Biol Chem 268:16037–16046

    Google Scholar 

  • Diamant Z, Timmers MC, Van Der Veen H, Page CP, Van Der Meer FJM, Sterk PJ (1996) Effect of inhaled heparin on allergen-induced early and late asthmatic responses in patients with atopic asthma. Am J Respir Crit Care Med 153:1790–1795

    PubMed  CAS  Google Scholar 

  • Diamond MS, Alon R, Parkos CA, Quinn MT, Springer TA (1995) Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD18). J Cell Biol 130:1473–1482

    Article  PubMed  CAS  Google Scholar 

  • Dolowitz DA, Dougherty TF (1960) The use of heparin as an anti-inflammatory agent. Laryngoscope 70:873–874

    PubMed  CAS  Google Scholar 

  • Dolowitz DA, Dougherty TF (1965) The use of heparin in the control of allergies. Ann Allergy 23:309–313

    PubMed  CAS  Google Scholar 

  • Dragstedt CA, Wells JA, Rocha E, Silva M (1942) Inhibitory effect of heparin upon histamine release by trypsin, antigen, and protease. Proc Soc Exp Biol Med 51:191–192

    CAS  Google Scholar 

  • Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96:1194–1195

    Article  Google Scholar 

  • Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I, Elkin M (2006) Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107:3609–3616

    Article  PubMed  CAS  Google Scholar 

  • Engelberg H (1999) Actions of heparin that may affect the malignant process. Cancer 85:257–272

    Article  PubMed  CAS  Google Scholar 

  • Engelberg H (2001) Endogenous heparin activity deficiency: the ‘missing link’ in atherogenesis? Atherosclerosis 159:253–260

    Article  PubMed  CAS  Google Scholar 

  • Evangelista V, Piccardoni P, Maugeri N, De Gaetano G, Cerletti C (1992) Inhibition by heparin of platelet activation induced by neutrophil-derived cathepsin G. Eur J Pharmacol 216:401–405

    Article  PubMed  CAS  Google Scholar 

  • Evans RC, Wong VS, Morris AI, Rhodes JM (1997) Treatment of corticosteroid-resistant ulcerative colitis with heparin – a report of 16 cases. Aliment Pharmacol Ther 11:1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks MB, Mildner AM, Leone JW, Cavey GS, Mathews WR, Drong RF, Slightom JL, Bienkowski MJ, Smith CW, Bannow CA, Heinrikson RL (1999) Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem 274:29587–29590

    Article  PubMed  CAS  Google Scholar 

  • Ferreira Chacon JM, Mello de Andrea LM, Blanes L, Ferreira LM (2010) Effects of topical application of 10,000 IU heparin on patients with perineal dermatitits and second-degree burns treated in a public pediatric hospital. J Tissue Viability 19:150–158

    Article  PubMed  Google Scholar 

  • Forsberg E, Pejler G, Ringvall M, Lunderius C, Tomasini-Johansson B, Kusche-Gullberg M, Eriksson I, Ledin J, Hellman L, Kjellén L (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400:773–776

    Article  PubMed  CAS  Google Scholar 

  • Fredens K, Dahl R, Venge P (1991) In vitro studies of the interaction between heparin and eosinophil cationic protein. Allergy 46:27–29

    Article  PubMed  CAS  Google Scholar 

  • Freischlag JA, Colburn MD, Quinones-Baldrich WJ, Moore WS (1992) Heparin, urokinase, and ancrod alter neutrophil function. J Vasc Surg 16:565–572

    Article  PubMed  CAS  Google Scholar 

  • Fritzsche J, Alban S, Ludwig RJ, Rubant S, Boehncke W-H, Schumacher G, Bendas G (2006) The influence of various structural parameters of semisynthetic sulfated polysaccharides on the P-selectin inhibitory capacity. Biochem Pharmacol 72:474–485

    Article  PubMed  CAS  Google Scholar 

  • Fryer A, Huang YC, Rao G, Jacoby D, Mancilla E, Whorton R, Piantadosi CA, Kennedy T, Hoidal J (1997) Selective O-desulfation produces nonanticoagulant heparin that retains pharmacological activity in the lung. J Pharmacol Exp Ther 282:208–219

    PubMed  CAS  Google Scholar 

  • Gaffney A, Gaffney P (1996) Rheumatoid arthritis and heparin. Br J Rheumatol 35:808

    Article  PubMed  CAS  Google Scholar 

  • Gaffney PR, O’Leary J, Doyle CT, Gaffney A, Hogan J, Smew F, Annis P (1991) Response to heparin in patients with ulcerative colitis. Lancet 337:238–239

    Article  PubMed  CAS  Google Scholar 

  • Gaffney PR, Doyle CT, Gaffney A, Hogan J, Hayes DP, Annis P (1995) Paradoxical response to heparin in 10 patients with ulcerative colitis. Am J Gastroenterol 90:220–223

    PubMed  CAS  Google Scholar 

  • Gallagher JT (2011) Heparan sulphate: a heparin in miniature. In: Lever R, Mulloy B, Page CP (eds) Heparin – a century of progress. Springer, Heidelberg

    Google Scholar 

  • Ghosh TK, Eis PS, Mullaney JM, Ebert CL, Gill DL (1988) Competitive, reversible and potent antagonism of inositol 1,4,5-triphosphate-activated calcium release by heparin. J Biol Chem 263:11075–11079

    PubMed  CAS  Google Scholar 

  • Gilat D, Hershkoviz R, Mekori YA, Vlodavsky I, Lider O (1994) Regulation of adhesion of CD4+ T lymphocytes to intact or heparinase-treated subendothelial extracellular matrix by diffusible or anchored RANTES and MIP-1α. J Immunol 153:4899–4906

    PubMed  CAS  Google Scholar 

  • Giuffrè L, Cordey A-S, Monai N, Tardy Y, Schapira M, Spertini O (1997) Monocyte adhesion to activated aortic endothelium: role of L-selectin and heparan sulfate proteoglycans. J Cell Biol 136:945–956

    Article  PubMed  Google Scholar 

  • Gonze MD, Salartash K, Sternbergh WC, Baughman RA, Leone-Bay A, Money SR (2000) Orally administered unfractionated heparin with carrier agent is therapeutic for deep venous thrombosis. Circulation 101:2658–2661

    PubMed  CAS  Google Scholar 

  • Gorski A, Lao M, Gradowska L, Nowaczyk M, Wasik M, Lagodzinski Z (1991) New strategies of heparin treatment used to prolong allograft survival. Transplant Proc 23:2251–2252

    PubMed  CAS  Google Scholar 

  • Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818

    CAS  Google Scholar 

  • Green WF, Konnaris K, Woolcock AJ (1993) Effect of salbutamol, fenoterol, and sodium cromoglycate on the release of heparin from sensitized human lung fragments challenged with Dermatophagoides pteronyssinus allergen. Am J Respir Cell Mol Biol 8:518–521

    PubMed  CAS  Google Scholar 

  • Guyton JR, Rosenberg RD, Clowes AW, Karnovsky (1980) Inhibition of rat arterial smooth muscle cell proliferation by heparin: in vivo studies with anticoagulant and nonanticoagulant heparin. Circ Res 46:625–634

    PubMed  CAS  Google Scholar 

  • Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans – as exemplified by chemokines. Annu Rev Biochem 74:385–410

    Article  PubMed  CAS  Google Scholar 

  • Hettiarachchi RJ, Smorenburg SM, Ginsberg J, Levine M, Prins MH, Büller HR (1999) Do heparins do more than just treat thrombosis? The influence of heparins on cancer spread. Thromb Haemost 82:947–952

    PubMed  CAS  Google Scholar 

  • Hiebert LM (2002) Oral heparins. Clin Lab 48:111–116

    PubMed  CAS  Google Scholar 

  • Hiebert LM, Ping T, Wice SM (2008) Enhanced antithrombotic effects of unfractionated heparin in rats after repeated oral doses and its relationship to endothelial heparin concentration. Br J Pharmacol 153:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth SJ, Hoque K, Linnard D, Corry DG, Barker SG (2000) Delivery of low molecular weight heparin for prophylaxis against deep vein thrombosis using a novel, needle-less injection device (J-Tip). Ann R Coll Surg Engl 82:428–431

    PubMed  CAS  Google Scholar 

  • Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR (1999) Cloning of mammalian heparanase: an essential enzyme involved in tumor invasion and metastasis. Nat Med 5:803–809

    Article  PubMed  CAS  Google Scholar 

  • Hulett MD, Hornby JR, Ohms SJ, Zuegg J, Freeman C, Gready JE, Parish CR (2000) Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 39:15659–15667

    Article  PubMed  CAS  Google Scholar 

  • Humphries DE, Wong GW, Friend DS, Gurish MF, Qiu WT, Huang C, Sharpe AH, Stevens RL (1999) Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400:769–772

    Article  PubMed  CAS  Google Scholar 

  • Inase N, Schreck RE, Lazarus SC (1993) Heparin inhibits histamine release from canine mast cells. Am J Physiol 264:L387–L390

    PubMed  CAS  Google Scholar 

  • Jaques LB (1979) Heparins – anionic polyelectrolyte drugs. Pharmacol Rev 31:99–167

    PubMed  CAS  Google Scholar 

  • Johnson Z, Kosco-Vilbois MH, Herren S, Cirillo R, Muzio V, Zaratin P, Carbonatto M, Mack M, Smailbegovic A, Rose M, Lever R, Page C, Wells TN, Proudfoot AE (2004) Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system. J Immunol 173:5776–5785

    PubMed  CAS  Google Scholar 

  • Jones H, Paul W, Page CP (2002) The effects of heparin and related molecules on vascular permeability and neutrophil accumulation in rabbit skin. Br J Pharmacol 135:469–479

    Article  PubMed  CAS  Google Scholar 

  • Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D (2005) A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 24:4037–4051

    PubMed  CAS  Google Scholar 

  • Kallapur SG, Akeson RA (1992) The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans. J Neurosci Res 33:538–548

    Article  PubMed  CAS  Google Scholar 

  • Kanabar V, Hirst SJ, O'Connor BJ, Page CP (2005) Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle. Br J Pharmacol 146:370–377

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky MJ, Wright TC Jr, Castellot JJ Jr, Choay J, Lormeau JC, Petitou M (1989) Heparin, heparan sulfate, smooth muscle cells, and atherosclerosis. Ann NY Acad Sci 556:268–281

    Article  PubMed  CAS  Google Scholar 

  • Kennedy TP (1994) Use of heparin to inhibit interleukin-8. International patent application, WO94/18989

    Google Scholar 

  • Khorana AA, Sahni A, Altland OD, Francis CW (2003) Heparin inhibition of endothelial cell proliferation and organization is dependent on molecular weight. Arterioscler Thromb Vasc Biol 23:2110–2115

    Article  PubMed  CAS  Google Scholar 

  • Kilfeather SA, Tagoe S, Perez AC, Okona-Mensah K, Matin R, Page CP (1995) Inhibition of serum-induced proliferation of bovine tracheal smooth muscle cells in culture by heparin and related glycosaminoglycans. Br J Pharmacol 114:1442–1446

    PubMed  CAS  Google Scholar 

  • Kilgore KS, Tanhehco EJ, Naylor KB, Lucchesi BR (1999) Ex vivo reversal of heparin-mediated cardioprotection by heparinase after ischemia and reperfusion. J Pharmacol Exp Therapeut 290:1041–1047

    CAS  Google Scholar 

  • Kiselyov VV, Berezin V, Maar TE, Soroka V, Edvardsen K, Schousboe A, Bock E (1997) The first immunoglobulin-like neural cell adhesion molecule (NCAM) domain is involved in double-reciprocal interaction with the second immunoglobulin-like NCAM domain and in heparin binding. J Biol Chem 272:10125–10134

    Article  PubMed  CAS  Google Scholar 

  • Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A (1998) Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. J Clin Invest 101:877–889

    Article  PubMed  CAS  Google Scholar 

  • Kovanen PT (2009) Mast cells in atherogenesis: actions and reactions. Curr Atheroscler Rep 11:214–219

    Article  PubMed  CAS  Google Scholar 

  • Kuderer NM, Khorana AA, Lyman GH, Francis CW (2007) A meta-analysis and systematic review of the efficacy and safety of anticoagulants as cancer treatment: impact on survival and bleeding complications. Cancer 110:1149–1161

    Article  PubMed  CAS  Google Scholar 

  • Kussie PH, Hulmes JD, Ludwig DL, Patel S, Navarro EC, Seddon AP, Giorgio NA, Bohlen P (1999) Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Commun 261:183–187

    Article  PubMed  CAS  Google Scholar 

  • Laghi-Pasini F, Pasqui AL, Ceccatelli L, Capecchi PL, Orrico A, Di Perri T (1984) Heparin inhibition of polymorphonuclear leukocyte activation in vitro. A possible pharmacological approach to granulocyte-mediated vascular damage. Thromb Res 35:527–537

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    Article  PubMed  CAS  Google Scholar 

  • Leculier C, Benzerara O, Couprie N, Francina A, Lasne Y, Archimbaud E, Fiere D (1992) Specific binding between human neutrophils and heparin. Br J Haematol 81:81–85

    Article  PubMed  CAS  Google Scholar 

  • Lever R, Page CP (2002) Novel drug development opportunities for heparin. Nat Rev Drug Discov 1:140–148

    Article  PubMed  CAS  Google Scholar 

  • Lever R, Hoult JRS, Page CP (2000) The effects of heparin and related molecules upon the adhesion of human polymorphonuclear leucocytes to vascular endothelium in vitro. Br J Pharmacol 129:533–540

    Article  PubMed  CAS  Google Scholar 

  • Lever R, Lo WT, Faraidoun M, Amin V, Brown RA, Gallagher J, Page CP (2007) Size-fractionated heparins have differential effects on human neutrophil function in vitro. Br J Pharmacol 151:837–843

    Article  PubMed  CAS  Google Scholar 

  • Lever R, Smailbegovic A, Page CP (2010) Locally available heparin modulates inflammatory cell recruitment in a manner independent of anticoagulant activity. Eur J Pharmacol 630:137–144

    Article  PubMed  CAS  Google Scholar 

  • Ley K, Cerrito M, Arfors K-E (1991) Sulfated polysaccharides inhibit leukocyte rolling in rabbit mesentery venules. Am J Physiol 260:H1667–H1673

    PubMed  CAS  Google Scholar 

  • Li L-F, Huang C-C, Lin H-C, Tsai Y-H, Quinn DA, Liao S-K (2009) Unfractionated heparin and enoxaparin reduce high-stretch ventilation augmented lung injury: a prospective, controlled animal experiment. Crit Care 13:R108

    Article  PubMed  Google Scholar 

  • Lider O, Baharav E, Mekori YA, Miller T, Naparstek Y, Vlodavsky I, Cohen IR (1989) Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparin. J Clin Invest 83:752–756

    Article  PubMed  CAS  Google Scholar 

  • Lider O, Mekori YA, Miller T, Bar-Tana R, Vlodavsky I, Baharav E, Cohen IR, Naparstek Y (1990) Inhibition of T lymphocyte heparanase by heparin prevents T cell migration and T cell-mediated immunity. Eur J Immunol 20:493–499

    Article  PubMed  CAS  Google Scholar 

  • Lilly JD, Parsons CL (1990) Bladder surface glycosaminoglycans is a human epithelial permeability barrier. Surg Gynaecol Obstet 171:493–496

    CAS  Google Scholar 

  • Maarsingh H, de Boer J, Kauffman HF, Zaagsma J, Meurs H (2004) Heparin normalizes allergen-induced nitric oxide deficiency and airway hyperresponsiveness. Br J Pharmacol 142:1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Marchetti M, Vignoli A, Russo L, Balducci D, Pagnoncelli M, Barbui T, Falanga A (2008) Endothelial capillary tube formation and cell proliferation induced by tumor cells are affected by low molecular weight heparins and unfractionated heparin. Thromb Res 121:637–645

    Article  PubMed  CAS  Google Scholar 

  • Matzner Y, Marx G, Drexler R, Eldor A (1984) The inhibitory effect of heparin and related glycosaminoglycans on neutrophil chemotaxis. Thromb Haemost 52:134–137

    PubMed  CAS  Google Scholar 

  • Matzner Y, Vlodavsky I, Bar-Ner M, Ishai-Michaeli R, Tauber AI (1992) Subcellular localization of heparanase in human neutrophils. J Leukoc Biol 51:519–524

    PubMed  CAS  Google Scholar 

  • McCaffrey TA, Falcone DJ, Brayton CF, Agarwal LA, Welt FG, Weksler BB (1989) Transforming growth factor-β activity is potentiated by heparin via dislocation of the transforming growth factor-β/α2-macroglobulin inactive complex. J Cell Biol 109:441–448

    Article  PubMed  CAS  Google Scholar 

  • McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151:1–14

    Article  PubMed  CAS  Google Scholar 

  • McKenzie E, Tyson K, Stamps A, Smith P, Turner P, Barry R, Hircock M, Patel S, Barry E, Stubberfield C, Terrett J, Page M (2000) Cloning and expression profiling of hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 276:1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Mehrad B, Keane MP, Strieter RM (2007) Chemokines as mediators of angiogenesis. Thromb Haemost 97:755–762

    PubMed  CAS  Google Scholar 

  • Michell NP, Lalor P, Langman MJ (2001) Heparin therapy for ulcerative colitis? Effects and mechanisms. Eur J Gastroenterol Hepatol 13:449–456

    Article  PubMed  CAS  Google Scholar 

  • Miller MD, Krangel MS (1992) Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol 12:17–46

    PubMed  CAS  Google Scholar 

  • Miller AC, Rivero A, Ziad S, Smith DJ, Elamin EM (2009) Influence of nebulized unfractionated heparin and N-acetylcysteine in acute lung injury after smoke inhalation injury. J Burn Care Res 30:249–256

    Article  PubMed  Google Scholar 

  • Mousa SA (2010) Heparin and low-molecular weight heparins in thrombosis and beyond. Methods Mol Biol 663:109–132

    Article  PubMed  CAS  Google Scholar 

  • Mousa SA, Fareed J, Iqbal O, Kaiser B (2004) Tissue factor pathway inhibitor in thrombosis and beyond. Methods Mol Med 93:133–155

    PubMed  CAS  Google Scholar 

  • Mousa SA, Linhardt R, Francis JL, Amirkkhosravi A (2006) Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular weight heparin, enoxaparin. Thromb Haemost 96:816–821

    PubMed  CAS  Google Scholar 

  • Mulloy B, Crane DT, Drake AF, Davies DB (1996) The interaction between heparin and polylysine: a circular dichroism and molecular modelling study. Braz J Med Biol Res 29:721–729

    PubMed  CAS  Google Scholar 

  • Muramatsu T, Muramatsu H (2008) Glycosaminoglycan-binding cytokines as tumor markers. Proteomics 8:3350–3359

    Article  PubMed  CAS  Google Scholar 

  • Murch SH, MacDonald TT, Walker-Smith JA, Levin M, Lionetti P, Klein NJ (1993) Disruption of sulphated glycosaminoglycans in intestinal inflammation. Lancet 341:711–714

    Article  PubMed  CAS  Google Scholar 

  • Mustafa F, Yang T, Khan MA, Ahsan F (2004) Chain length-dependent effects of alkylmaltosides on nasal absorption of enoxaparin. J Pharm Sci 93:675–683

    Article  PubMed  CAS  Google Scholar 

  • Nakajima M, Irimura T, Nicolson GL (1988) Heparanases and tumor metastasis. J Cell Biochem 36:157–167

    Article  PubMed  CAS  Google Scholar 

  • Naparstek E, Slavin S, Weiss L, Sidi H, Ohana M, Reich S, Vlodavsky I, Cohen IR, Naparstek Y (1993) Low-dose heparin inhibits acute graft versus host disease in mice. Bone Marrow Transplant 12:185–189

    PubMed  CAS  Google Scholar 

  • Nelson RM, Cecconi O, Roberts WG, Aruffo A, Linhardt RJ, Bevilacqua MP (1993) Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 82:3253–3258

    PubMed  CAS  Google Scholar 

  • Niers TM, Klerk CP, DiNisio M, Van Noorden CJ, Büller HR, Reitsma PH, Richel DJ (2007) Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit Rev Oncol Hematol 33:358–368

    Google Scholar 

  • Noga O, Brunnee T, Schaper C, Kunkel G (1999) Heparin, derived from the mast cells of human lungs is responsible for the generation of kinins in allergic reactions due to the activation of the contact system. Int Arch Allergy Immunol 120:310–316

    Article  PubMed  CAS  Google Scholar 

  • Okona-Mensah KB, Shittu E, Page C, Costello J, Kilfeather SA (1998) Inhibition of serum and transforming growth factor beta (TGF-β1)-induced DNA synthesis in confluent airway smooth muscle by heparin. Br J Pharmacol 125:599–606

    Article  PubMed  CAS  Google Scholar 

  • Oremus M, Hanson M, Whitlock R, Young E, Archer C, Dal Cin A, Gupta A, Raina P (2007) A systematic review of heparin to treat burn injury. J Burn Care Res 28:794–804

    Article  PubMed  Google Scholar 

  • Page CP (1991) One explanation of the asthma paradox: inhibition of natural anti-inflammatory mechanism by beta 2-agonists. Lancet 337:717–720

    Article  PubMed  CAS  Google Scholar 

  • Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471:M99–M108

    PubMed  CAS  Google Scholar 

  • Parsons CL (1997) Epithelial coating techniques in the treatment of interstitial cystitis. Urology 49:100–104

    Article  PubMed  CAS  Google Scholar 

  • Pégorier S, Wagner LA, Gleich GJ, Pretolani M (2006) Eosinophil-derived cationic proteins activate the synthesis of remodeling factors by airway epithelial cells. J Immunol 177:4861–4869

    PubMed  Google Scholar 

  • Peter K, Schwarz M, Conradt C, Nordt T, Moser M, Kübler W, Bode C (1999) Heparin inhibits ligand binding to the leukocyte integrin Mac-1 (CD11b/CD18). Circulation 100:1533–1539

    PubMed  CAS  Google Scholar 

  • Petitou M, Nancy-Portebois V, Dubreucq G, Motte V, Meuleman D, de Kort M, van Boeckel CA, Vogel GM, Wisse JA (2009) From heparin to EP217609: the long way to a new pentasaccharide-based neutralisable anticoagulant with an unprecedented pharmacological profile. Thromb Haemost 102:804–810

    PubMed  CAS  Google Scholar 

  • Piccardoni P, Evangelista V, Piccoli A, De Gaetano G, Walz A, Cerletti C (1996) Thrombin-activated platelets release two NAP-2 variants that stimulate polymorphonuclear leukocytes. Thromb Haemost 76:780–785

    PubMed  CAS  Google Scholar 

  • Pinel C, Wice SM, Hiebert LM (2004) Orally administered heparins prevent arterial thrombosis in a rat model. Thromb Haemost 91:919–926

    PubMed  CAS  Google Scholar 

  • Pineo GF, Hull RD, Marder VJ (2001) Orally active heparin and low-molecular-weight heparin. Curr Opin Pulm Med 7:344–348

    Article  PubMed  CAS  Google Scholar 

  • Pitchford SC, Yano H, Lever R, Riffo-Vasquez Y, Ciferri S, Rose MJ, Giannini S, Momi S, Spina D, O'connor B, Gresele P, Page CP (2003) Platelets are essential for leukocyte recruitment in allergic inflammation. J Allergy Clin Immunol 112:109–118

    Article  PubMed  CAS  Google Scholar 

  • Powell AK, Yates EA, Fernig DG, Turnbull JE (2004) Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 14:17R–30R

    Article  PubMed  CAS  Google Scholar 

  • Prince RN, Schreiter ER, Zou P, Wiley HS, Ting AY, Lee RT, Lauffenburger DA (2010) The heparin-binding domain of HB-EGF mediates localization to sites of cell–cell contact and prevents HB-EGF proteolytic release. J Cell Sci 123:2308–2318

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Zhao G, Liu D, Shriver Z, Sundaram M, Sengupta S, Venkataraman G, Langer R, Sasisekharan R (2004) Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc Natl Acad Sci USA 101:9867–9872

    Article  PubMed  CAS  Google Scholar 

  • Radulescu A, Zhang HY, Chen CL, Chen Y, Zhou Y, Yu X, Otabor I, Olson JK, Besner GE (2010) Heparin-binding egf-like growth factor promotes intestinal anastomotic healing. J Surg Res doi:10.1016/j.jss.2010.06.036

  • Rawat A, Yang T, Hussain A, Ahsan F (2008) Complexation of a poly-L-arginine with low molecular weight heparin enhances pulmonary absorption of the drug. Pharm Res 25:936–948

    Article  PubMed  CAS  Google Scholar 

  • Redini F, Tixier JM, Petitou M, Choay J, Robert L, Hornebeck S (1988) Inhibition of leucocyte elastase by heparin and its derivatives. Biochem J 252:515–519

    PubMed  CAS  Google Scholar 

  • Revelle BM, Scott D, Beck PJ (1996) Single amino acid residues in the E- and P-selectin epidermal growth factor domains can determine carbohydrate binding specificity. J Biol Chem 271:16160–16170

    Article  PubMed  CAS  Google Scholar 

  • Rohrer MJ, Kestin AS, Ellis PA, Barnard MR, Rodino L, Breckwoldt WL, Li J-M, Michelson AD (1992) High-dose heparin supresses platelet α-granule secretion. J Vasc Surg 15:1000–1009

    Article  PubMed  CAS  Google Scholar 

  • Salas A, Sans M, Soriano A, Reverter JC, Anderson DC, Piqué JM, Panés J (2000) Heparin attenuates TNF-alpha induced inflammatory response through a CD11b dependent mechanism. Gut 47:88–96

    Article  PubMed  CAS  Google Scholar 

  • Samoszuk M, Corwin M, Yu H, Wang J, Nalcioglu O, Su MY (2003) Inhibition of thrombosis in melanoma allografts in mice by endogenous mast cell heparin. Thromb Haemost 90:351–360

    PubMed  CAS  Google Scholar 

  • Samoszuk M, Kanakubo E, Chan JK (2005) Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts. BMC Cancer 5:121

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Herd CM, Page CP (1993) Effect of heparin and a low-molecular weight heparinoid on PAF-induced airway responses in neonatally immunized rabbits. Br J Pharmacol 110:107–112

    PubMed  CAS  Google Scholar 

  • Sciumbata T, Caretto P, Pirovano P, Pozzi P, Cremonesi P, Galimberti G, Leoni F, Marcucci F (1996) Treatment with modified heparins inhibits experimental metastasis formation and leads, in some animals, to long-term survival. Invasion Metastasis 16:132–143

    PubMed  CAS  Google Scholar 

  • Seeds EAM, Page CP (2001) Heparin inhibits allergen-induced eosinophil infiltration into guinea-pig lung via a mechanism unrelated to its anticoagulant activity. Pulm Pharmacol Ther 14:111–119

    Article  PubMed  CAS  Google Scholar 

  • Seeds EAM, Hanss J, Page CP (1993) The effect of heparin and related proteoglycans on allergen and PAF-induced eosinophil infiltration. J Lipid Mediat 7:269–278

    PubMed  CAS  Google Scholar 

  • Seeds EAM, Horne AP, Tyrrell DJ, Page CP (1995) The effect of inhaled heparin and related glycosaminoglycans on allergen-induced eosinophil infiltration in guinea-pigs. Pulm Pharmacol 8:97–105

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Meteoglu I, Ogurlu M, Sen S, Derinceoz OO, Barutca S (2009) Topical heparin: a promising agent for the prevention of tracheal stenosis in airway suregery. J Surg Res 157:e23–e29

    Article  PubMed  CAS  Google Scholar 

  • Shankar VK, Handa A, Hands L (2008) Endogenous heparin activity is decreased in peripheral arterial occlusive disease. J Vasc Surg 47:1033–1038

    Article  PubMed  Google Scholar 

  • Shen J, Ran ZH, Tong JL, Xiao SD (2007) Meta-analysis: the utility and safety of heparin in the treatment of active ulcerative colitis. Aliment Pharmacol Ther 26:653–663

    Article  PubMed  CAS  Google Scholar 

  • Shute J (2011) Glycosaminoglycan and chemokine/growth factor interactions. In: Lever R, Mulloy B, Page CP (eds) Heparin – a century of progress. Springer, Heidelberg

    Google Scholar 

  • Shute JK, Parmar J, Holgate ST, Howart PH (1997) Urinary glycosaminoglycan levels are increased in acute severe asthma – a role for eosinophil-derived gelatinase B? Int Arch Allergy Immunol 113:366–367

    Article  PubMed  CAS  Google Scholar 

  • Silvestro L, Viano I, Macario M, Colangelo D, Montrucchio G, Panico S, Fantozzi R (1994) Effects of heparin and its desulfated derivatives on leukocyte-endothelial adhesion. Semin Thromb Hemost 20:254–258

    Article  PubMed  CAS  Google Scholar 

  • Simard JM, Schreibman D, Aldrich EF, Stallmeyer B, Le B, James RF, Beaty N (2010) Unfractionated heparin: multitargeted therapy for delayed neurological deficits induced by subarachnoid hemorrhage. Neurocrit Care 13(3):439–449

    Article  PubMed  CAS  Google Scholar 

  • Skinner MP, Lucas CM, Burns GF, Chesterman CN, Berndt MC (1991) GMP-140 binding to neutrophils is inhibited by sulfated glycans. J Biol Chem 266:5371–5374

    PubMed  CAS  Google Scholar 

  • Slungaard A, Vercellotti GM, Walker G, Nelson RD, Jacob HS (1990) Tumor necrosis factor-α/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium. J Exp Med 171:2025–2041

    Article  PubMed  CAS  Google Scholar 

  • Smailbegovic A, Lever R, Page CP (2001) The effects of heparin on the adhesion of human peripheral blood mononuclear cells to human stimulated umbilical vein endothelial cells. Br J Pharmacol 134:827–836

    Article  PubMed  CAS  Google Scholar 

  • Smorenburg SM, Van Noorden CJ (2001) The complex effects of heparins on cancer progression and metastasis in experimental studies. Pharmacol Rev 53:93–105

    PubMed  CAS  Google Scholar 

  • Smorenburg SM, Hettiarachchi RJ, Vink R, Büller HR (1999) The effects of unfractionated heparin on survival in patients with malignancy – a systematic review. Thromb Haemost 82:1600–1604

    PubMed  CAS  Google Scholar 

  • Stevenson JL, Choi SH, Varki A (2005) Differential metastasis inhibition by clinically relevant levels of heparins – correlation with selectin inhibition, not antithrombotic activity. Clin Cancer Res 11:7003–7011

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JL, Varki A, Borsig L (2007) Heparin attenuates metastasis mainly due to inhibition of P- and L-selectin, but non-anticoagulant heparins can have additional effects. Thromb Res 120:S107–S111

    Article  PubMed  Google Scholar 

  • Swaminathan GJ, Myszka DG, Katsamba PS, Ohnuki LE, Gleich GJ, Acharya KR (2005) Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochemistry 44:14152–14158

    Article  PubMed  CAS  Google Scholar 

  • Sy MS, Schneeberger E, McCluskey R, Greene MI, Rosenberg RD, Benacerraf B (1983) Inhibition of delayed-type hypersensitivity by heparin depleted of anticoagulant activity. Cell Immunol 82:23–32

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Ebihara S, Okazaki T, Asada M, Sasaki H, Yamaya M (2005) A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity. Br J Pharmacol 146:333–343

    Article  PubMed  CAS  Google Scholar 

  • Tangelder GJ, Arfors K-E (1991) Inhibition of leukocyte rolling in venules by protamine and sulfated polysaccharides. Blood 7:1565–1571

    Google Scholar 

  • Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans@host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20:9–22

    Article  PubMed  CAS  Google Scholar 

  • Teixeira MM, Hellewell PG (1993) Suppression by intradermal administration of heparin of eosinophil accumulation but not oedema formation in inflammatory reactions in guinea-pig skin. Br J Pharmacol 110:1496–1500

    PubMed  CAS  Google Scholar 

  • Teixeira MM, Rossi AG, Hellewell PG (1996) Adhesion mechanisms involved in C5a-induced eosinophil homotypic aggregation. J Leukoc Biol 59:389–396

    PubMed  CAS  Google Scholar 

  • Tekkök IH, Tekkök S, Ozcan OE, Erbengi T, Erbengi A (1994) Preventive effect of intracisternal heparin for proliferative angiopathy after experimental subarachnoid haemorrhage in rats. Acta Neurochir (Wien) 127:112–117

    Article  Google Scholar 

  • Toon MH, Maybauer MO, Greenwood JE, Maybauer DM, Fraser JF (2010) Management of acute smoke inhalation injury. Crit Care Resusc 12:53–61

    PubMed  Google Scholar 

  • Turnbull J, Powell A, Guimond S (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol 11:75–82

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell DJ, Horne AP, Holme KR, Preuss JM, Page CP (1999) Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol 46:151–208

    Article  PubMed  CAS  Google Scholar 

  • Uno F, Fujiwara T, Takata Y, Ohtani S, Katsuda K, Takaoka M, Ohkawa T, Naomoto Y, Nakajima M, Tanaka N (2001) Antisense-mediated suppression of human heparanase gene expression inhibits pleural dissemination of human cancer cells. Cancer Res 61:7855–7860

    PubMed  CAS  Google Scholar 

  • Vancheri C, Mastruzzo C, Armato F, Tomaselli V, Magrì S, Pistorio MP, LaMicela M, D'amico L, Crimi N (2001) Intranasal heparin reduces eosinophil recruitment after nasal allergen challenge in patients with allergic rhinitis. J Allergy Clin Immunol 108:703–708

    Article  PubMed  CAS  Google Scholar 

  • Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108:341–347

    PubMed  CAS  Google Scholar 

  • Vlodavsky I, Eldor A, Haimovitz-Friedman A, Matzner Y, Ishai-Michaeli R, Lider O, Naparstek Y, Cohen IR, Fuks Z (1992) Expression of heparinase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127

    PubMed  CAS  Google Scholar 

  • Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, Bitan M, Pappo O, Peretz T, Michal I, Spector L, Pecker I (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5:793–802

    Article  PubMed  CAS  Google Scholar 

  • Wagner S, Dues G, Sawitzky D, Frey P, Christ B (2004) Assessment of the biological performance of the needle-free injector INJEX using the isolated porcine forelimb. Br J Dermatol 150:455–461

    Article  PubMed  CAS  Google Scholar 

  • Walsh RL, Dillon TJ, Scicchitano R, McLennan G (1991) Heparin and heparan sulphate are inhibitors of human leucocyte elastase. Clin Sci 81:341–346

    PubMed  CAS  Google Scholar 

  • Wang Y, Kovanen PT (1999) Heparin proteoglycans released from rat serosal mast cells inhibit proliferation of rat aortic smooth muscle cells in culture. Circ Res 84:74–83

    PubMed  CAS  Google Scholar 

  • Watt SM, Williamson J, Genevier H, Fawcett J, Simmons DL, Hatzfield A, Nesbitt SA, Coombe DR (1993) The heparin binding PECAM-1 adhesion molecule is expressed by CD34+ hematopoietic precursor cells with early myeloid and B-lymphoid cell phenotypes. Blood 82:2649–2663

    PubMed  CAS  Google Scholar 

  • Willenborg DO, Parish CR (1988) Inhibition of allergic encephalomyelitis in rats by treatment with sulphated polysaccharides. J Immunol 140:3401–3405

    PubMed  CAS  Google Scholar 

  • Wladyslaw S (2002) Endogenous heparin – a protective marker in patients with myocardial infarction. Coron Artery Dis 13:423–426

    Article  PubMed  Google Scholar 

  • Xie X, Thorlacius H, Raud J, Hedqvist P, Lindbom L (1997) Inhibitory effect of locally administered heparin on leukocyte rolling and chemoattractant-induced firm adhesion in rat mesenteric venules in vivo. Br J Pharmacol 122:906–910

    Article  PubMed  CAS  Google Scholar 

  • Yanaka K, Nose T, Hindman BJ (1996) Heparin ameliorates brain injury by inhibiting leukocyte accumulation. Stroke 27:2146–2147

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Hussain A, Paulson J, Abbruscato TJ, Ahsan F (2004a) Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm Res 21:1127–1136

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Mustafa F, Ahsan F (2004b) Alkanoylsucroses in nasal delivery of low molecular weight heparins: in-vivo absorption and reversibility studies in rats. J Pharm Pharmacol 56:53–60

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Mustafa F, Bai S, Ahsan F (2004c) Pulmonary delivery of low molecular weight heparins. Pharm Res 21:2009–2016

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Hussain A, Bai S, Khalil IA, Harashima H, Ahsan F (2006) Positively charged polyethylenimines enhance nasal absorption of the negatively charged drug, low molecular weight heparin. J Control Release 115:289–297

    Article  PubMed  CAS  Google Scholar 

  • Zacharski LR, Ornstein DL (1988) Heparin and cancer. Thromb Haemost 80:10–23

    Google Scholar 

  • Zacharski LR, Ornstein DL, Mamourian AC (2000) Low-molecular-weight heparin and cancer. Semin Thromb Hemost 26:69–77

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Lever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lever, R., Page, C.P. (2012). Non-anticoagulant Effects of Heparin: An Overview. In: Lever, R., Mulloy, B., Page, C. (eds) Heparin - A Century of Progress. Handbook of Experimental Pharmacology, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23056-1_12

Download citation

Publish with us

Policies and ethics