Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 104))

Abstract

The last building block covered in the book is the Phase Locked Loop (PLL), virtually used in every integrated communication front-end. The complexity of this system is high; therefore the first section is dedicated to the basic concepts related to both PLL system architectures and basic components. The architecture of the classical phase locked loops used in RF IC designs are presented in that first section. Nevertheless, from the power consumption point of view, the decision on the architecture of the whole PLL is an important point, but the internal design of each block is also a key issue.

The three main and most challenging blocks are explained with a greater level of detail in subsequent sections: Phase Frequency Detector (PFD) is first described in section 8.2, then section 8.3 presents the design constraints related to the Voltage-Controlled Oscillator (VCO), and High Frequency Divider (HFD) is deeply analyzed in section 8.4. The two last blocks (VCO and HFD) are crucial in the whole power consumption of this complex circuit as these have to work in the high frequency bands of the application. Design examples are shown for these two blocks in section 8.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adín, I.: RF CMOS ICs Design applied to Multistandard Wireless Applications for the 5 GHz U-NII band. PhD. Thesis (2007)

    Google Scholar 

  2. Aguilera, J., Berenguer, R.: Design and Test of Integrated Inductors for RF applications. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  3. Ahola, R., et al.: A Single-Chip CMOS Transceiver for 802.11a/b/g Wireless LANs. IEEE Journal of Solid-State Circuits 39(12), 2250–2258 (2004)

    Article  Google Scholar 

  4. Antoine, P., et al.: A direct-conversion receiver for DVB-H. IEEE Journal of Solid-State Circuits 40, 25–36 (2005)

    Article  MathSciNet  Google Scholar 

  5. Behzad, A.R., et al.: A 5-GHz Direct-Conversion CMOS Transceiver Utilizing Automatic Frequency Control for the IEEE 802.11a Wireless LAN Standard. IEEE Journal of Solid-State Circuits 38(12), 2209–2220 (2003)

    Article  Google Scholar 

  6. Berny, A.D., et al.: A wideband low-phase-noise CMOS VCO. In: Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, September 21-24, pp. 555–558 (2003)

    Google Scholar 

  7. Craninckx, J., Steyaert, M.: Wireless CMOS Frequency Synthesizer Design. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  8. Wang, D., et al.: A fully integrated GSM/DCS/PCS Rx VCO with fast switching auto-band selection. In: IEEE Radio and Wireless Conference, RAWCON 2002, August 11-14, pp. 209–212 (2002)

    Google Scholar 

  9. Egan, W.F.: Frequency Synthesis by Phase Lock. Wiley Interscience, Hoboken (2000)

    Google Scholar 

  10. Hajimiri, A., Lee, T.H.: A General Theory of Phase Noise in Electrical Oscillators. IEEE Journal of Solid-State Circuits 33(2), 179–194 (1998)

    Article  Google Scholar 

  11. Hajimiri, A., Lee, T.H.: Design Issues in CMOS Differential LC Oscillators. IEEE JSSC 34(5) (May 1999)

    Google Scholar 

  12. Herzel, F., et al.: An Integrated CMOS RF Synthesizer for 802.11a Wireless LAN. IEEE Journal of Solid-State Circuits 38(10), 1767–1770 (2003)

    Article  Google Scholar 

  13. Huang, Q.: Circuit Design for Wireless Communications. Curso de RF, Lausanne, Suiza (June 2001)

    Google Scholar 

  14. Je-Kwang, C., et al.: A 2-GHz wide band low phase noise voltage-controlled oscillator with on-chip LC tank. Presented at Proceedings of the IEEE Custom Integrated Circuits Conference (2003)

    Google Scholar 

  15. Kampe, A., et al.: An LC-VCO with one octave tuning range. Presented at Proceedings of the 2005 European Conference on Circuit Theory and Design (2005)

    Google Scholar 

  16. Lee, T.H., Hajimiri, A.: Oscillator Phase Noise: A Tutorial. IEEE Journal of Solid-State Circuits 34(3), 326–336 (2000)

    Article  Google Scholar 

  17. Leeson, D.B.: A Simple Model of Feedback Oscillator Noise Spectrum. Proc. IEEE L. 54, 329–330 (1966)

    Article  Google Scholar 

  18. Leung, G.C.T., Luong, H.C.: A 1-V 5.2-GHz CMOS Synthesizer for WLAN Applications. IEEE Journal of Solid-State Circuits 39(11), 1873–1882 (2004)

    Article  Google Scholar 

  19. Levantino, S., et al.: Phase Noise in Digital Frequency Dividers. IEEE Journal of Solid-State Circuits 39(5), 775–783 (2004)

    Article  Google Scholar 

  20. Manetakis, K., et al.: A CMOS VCO with 48% tuning range for modern broadband systems. Presented at Proceedings of the IEEE Custom Integrated Circuits Conference (2004)

    Google Scholar 

  21. Mendizábal, J.: Design of a highly integrated dual RF front-end for GPS and Galileo in 0.35μm SiGe process, PhD Thesis (2006)

    Google Scholar 

  22. Soares, N., Noije, V.: A 1.6-GHz dual modulus prescaler using the extended true-single-phase-clock CMOS circuit technique (E-TSPC). IEEE Journal of Solid-State Circuits 34(1) (1999)

    Google Scholar 

  23. Pellerano, S., et al.: 13.5-mW, 5-GHz WLAN, CMOS frequency synthesizer using a true single phase clock divider. In: VLSI Circuits 2003 (2003)

    Google Scholar 

  24. Perrott, M.: High Speed Communication Circuits and Systems: High Speed Frequency Dividers. Mitopencourseware, Massachusetts Institute of Technology, USA (2003)

    Google Scholar 

  25. Quemada, C.: Metodología de diseño de PLLs aplicada al desarrollo de un sintetizador de frecuencia integrado CMOS para el estándar de WLAN IEEE 802.11a, PhD Thesis (2006)

    Google Scholar 

  26. Quemada, C., et al.: Design Methodologies for RF CMOS Phase Locked Loops. Artech House Publishers, Boston (2009)

    Google Scholar 

  27. Rategh, H., et al.: A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5-GHz Wireless LAN Receiver. IEEE Journal of Solid-State Circuits 35(5), 780–787 (2000)

    Article  Google Scholar 

  28. Razavi, B., et al.: Design of High-Speed, Low-Power Frequency Dividers and Phase-Locked Loops in Deep Submicron CMOS. IEEE Journal of Solid-State Circuits 30(2), 101–109 (1995)

    Article  Google Scholar 

  29. Razavi, B.: A Study of Phase Noise in CMOS Oscillators. IEEE Journal of Solid-State Circuits 31(3), 331–343 (1996)

    Article  Google Scholar 

  30. Razavi, B.: RF Microelectronics. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  31. Razavi, B., Lam, C.: A 2.6-GHz/5.2-GHz Frequency Synthesizer in 0.4-μm CMOS Technology. IEEE Journal of Solid-State Circuits 35(5), 788–794 (2000)

    Article  Google Scholar 

  32. Rohde, U.L., Newkirk, D.P.: RF/Microwave Circuit Design for Wireless Applications. Wiley Interscience, Hoboken (2000)

    Book  Google Scholar 

  33. Sjoland, H., Sjoblom, P.: Measured CMOS Switched High-Quality Capacitors in a Reconfigurable Matching Network. IEEE Transactions on Circuits and Systems II: Express Briefs 10, 858–862 (2007)

    Google Scholar 

  34. Svelto, F., et al.: A 1.3 GHz low-phase noise fully tunable CMOS LC VCO. IEEE Journal of Solid-State Circuits 35, 356 (2000)

    Article  Google Scholar 

  35. Valla, M., et al.: A 72-mW CMOS 802.11a Direct Conversion Front-End With 3.5-dB NF and 200-KHz 1/f Noise Corner. IEEE Journal of Solid-State Circuits 40(4), 970–977 (2005)

    Article  Google Scholar 

  36. Vassiliou, I., et al.: A Single-Chip Digitally Calibrated 5.15-5.825-GHz 0.18-μm CMOS Transceiver for 802.11a Wireless LAN. IEEE Journal of Solid-State Circuits 38(12), 2221–2229 (2003)

    Article  Google Scholar 

  37. Wang: A 1.8V 3mW 16.8GHz Frequency Divider in 0.25μm CMOS. In: IEEE International Solid-State Circuits Conference, pp. 196–197 (2000)

    Google Scholar 

  38. Wohlmuth, H., Kehrer, D.: A High Sensitivity Static 2:1 Frequency Divider up to 27 GHz in 120nm CMOS. In: Proc. Eur. Solid State Circuits Conf. (ESSCIRC), pp. 823–826 (2002)

    Google Scholar 

  39. Yu, D., et al.: Design and Optimization of the Extended True Single-Phase Clock-Based Prescaler. IEEE Transactions on Microwave Theory and Techniques 54(11) (2006)

    Google Scholar 

  40. Yuan, J., Svensson, C.: High-Speed CMOS Circuits Technique. IEEE Journal of Solid-State Circuits 24(1), 62–70 (1989)

    Article  Google Scholar 

  41. Zargari, M., et al.: A 5-GHz CMOS Transceiver for IEEE 802.11a Wireless LAN Systems. IEEE Journal of Solid-State Circuits 37(12), 1688–1694 (2002)

    Article  Google Scholar 

  42. Zhang, P., et al.: A 5-GHz Direct-Conversion CMOS Transceiver. IEEE Journal of Solid-State Circuits 38(12), 2232–2237 (2003)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alvarado, U., Bistué, G., Adín, I. (2011). Phase Locked Loop (PLL) Design. In: Low Power RF Circuit Design in Standard CMOS Technology. Lecture Notes in Electrical Engineering, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22987-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22987-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22986-2

  • Online ISBN: 978-3-642-22987-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics