Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 104))

Abstract

The mixer is one of the key building blocks in any transceiver system as it performs the frequency up/down conversion, especially in the receivers, where weak RF signals are present at the input (section 3.1). In most cases, amplified only by the LNA, the mixer has to guarantee low noise figure (a positive gain helps for this issue), and high linearity, while consuming low-power consumption. As in any RF circuit, its whole performance, taking into account all these parameters, represent a severe trade-off. The aim of this chapter is to analyze the functional aspect of mixers from the low power consumption perspective.

This chapter begins with a brief review of mixer fundamental concepts (section 7.1) and different circuit topologies (section 7.2), as well as a short description of the mixer’s main functional parameters. These parameters areanalyzedin depth from the low power consumption perspective in section 7.3, and finally some implemented circuits are presented, analyzed and discussed in section 7.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agilent, Application note 57-2: Noise Figure Measurement Accuracy - The Y-Factor Method (2004)

    Google Scholar 

  2. Alvarado, U., et al.: Low Frequency Noise Optimization in Gilbert-Cell Based Mixers for Direct Conversion (Zero-IF) Receivers. Microwave and Optical Technology Letters 50, 3128 (2008)

    Article  Google Scholar 

  3. Bautista, E.E., et al.: A High IIP2 Downconversion Mixer Using Dynamic Matching. IEEE Journal of Solid State Circuits 35(12), 1934 (2000)

    Article  Google Scholar 

  4. Caverly, R.: CMOS RFIC Design Principles. Artech House, Boston (2007)

    Google Scholar 

  5. Circa, R., et al.: Integrated 130nm CMOS Passive Mixer for 5GHz WLAN Applications. In: SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, p. 103 (July 2005)

    Google Scholar 

  6. Clein, D.: CMOS IC Layout. Concepts, Methodologies and Tools. Newness (2000)

    Google Scholar 

  7. Coleman, C.: An Introduction to Radio Frequency Engineering. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  8. Crols, J., Steyaert, M.: A 1.5GHz Highly Linear CMOS Downconversion Mixer. IEEE Journal of Solid State Circuits 30(7), 736 (1995)

    Article  Google Scholar 

  9. Darabi, H., et al.: Noise in RF-CMOS mixers: a simple physical model. IEEE Journal of Solid State Circuits 35, 15 (2000)

    Article  Google Scholar 

  10. DVB-H_EN302304, Transmission System for Handheld Terminals, ETSI standard

    Google Scholar 

  11. DVB-T_EN300744, Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television, ETSI standard

    Google Scholar 

  12. Egan, W.F.: Practical RF System Design. John Wiley and Sons, Chichester (2003)

    Book  Google Scholar 

  13. Fong, K.: Dual-Band High-Linearity Variable Gain Low-Noise Amplifiers for Wireless Applications. In: ISSCC Symposium, pp. 194–195, 224–225, 463 (February 1999)

    Google Scholar 

  14. Gilbert, B.: A Precise Four-Quadrant Multiplier with Subnanosecond Response. IEEE Journal of Solid State Circuits 39(4), 365 (1968)

    Article  Google Scholar 

  15. Gilbert, B.: The Micromixer: A Highly Linear Variant of the Gilbert Mixer Using a Bisymmetric Class-AB Input Stage. IEEE Journal of Solid-State Circuits 32, 1412 (1997)

    Article  Google Scholar 

  16. Gilbert, B.: The Multi-Tanh Principle: A Tutorial Overview. IEEE Journal of Solid State Circuits 33, 2 (1998)

    Article  Google Scholar 

  17. Jung, G.-Y.: A Low-Noise UWB CMOSMixer Using Current Bleeding and Resonant Inductor Techniques. IEEE Journal of Solid State Circuits 49, 1595 (2007)

    Google Scholar 

  18. Goldfarb, M., et al.: Even harmonic double-balanced active mixer for use in direct conversion receivers. IEEE Journal of Solid State Circuits 38(10), 1762 (2000)

    Article  Google Scholar 

  19. Hastins, A.: The Art of Analog Layout. Prentice-Hall, Englewood Cliffs (2000)

    Google Scholar 

  20. Hsieh-Hung, Liang-Hung: Design of Ultra-Low-Voltage RF Front-Ends With Complementary Current-Reused Architectures. IEEE Transactions on Microwave Theory and Techniques 55(7), 1445 (2007)

    Article  Google Scholar 

  21. IEEE, WLAN 802.11a: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. High-speed Physical Layer in the 5 GHz Band (1999)

    Google Scholar 

  22. IEEE, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band, IEEE, SA Standard Board (2003)

    Google Scholar 

  23. Karanicolas, A.N.: A 2.7 V 900 MHz CMOS LNA and mixer. IEEE Journal of Solid State Circuits 31, 50 (1996)

    Article  Google Scholar 

  24. Kim, J.-H., et al.: Design of Reconfigurable RF Front-End for Multi-Standard Receiver Using Switchable Passive Networks. Analog Integrated Circuits and Signal Processing 50(2), 81 (2007)

    Article  Google Scholar 

  25. Lee, T.: The Design of CMOS Radio Frequency Integrated Circuits. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  26. Lee, S.G., et al.: Current-reuse bleeding mixer. Electronics Letters 36, 696 (2000)

    Article  Google Scholar 

  27. Liang: The Exploration of Spectrum Monitor Architecture for Cognitive Radio, University Of Southampton, PhD Dissertation (2007)

    Google Scholar 

  28. Liu, E.A.W.: BSIM3v3.2 MOSFET Model Users Manual, The Regents of the University of California (1998)

    Google Scholar 

  29. Maas, S.A.: A GaAsMESFETmixer with very low intermodulation. IEEE Transactions on Microwave Theory and Techniques MTT-35, 425 (1987)

    Article  Google Scholar 

  30. Huang, M.F., et al.: A CMOS Even Harmonic Mixer with Current Reuse for Low Power Applications. In: Proceedings of the 2004 International Symposium on Low Power Electronics and Design (August 2004)

    Google Scholar 

  31. Phan, T.A., et al.: A High Performance CMOS Direct Down Conversion Mixer for UWB System. IEICE Transactions on Electronics 88(12), 2316 (2005)

    Article  Google Scholar 

  32. Razavi, B.: RF Microelectronics. Prentice Hall PTR, Englewood Cliffs (1998)

    Google Scholar 

  33. Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York (2001)

    Google Scholar 

  34. Yoo, S.-S., Yoo, H.-J.: A CMOS Multi-Standard Mixer for WCDMA, Wi-Bro and 802.11a/b/g. In: Microwave Conference Procedings, Asia-Pacific Conference Proceedings, APMC (2005)

    Google Scholar 

  35. Shaikh, K.A., DeGroat, J.: A 5GHz CMOS Low Power Down-Conversion Mixer for Wireless LAN Applications. In: Proceedings of the 5th WSEAS International Conference on Circuits, Systems, Electronics, Control and Signal Processing, p. 26 (2006)

    Google Scholar 

  36. Sedra, A., Smith, K.C.: Microelectronic Circuits. Oxford University Press, Oxford (2004)

    Google Scholar 

  37. Terrovitis, M.T., et al.: Noise in Current-Commutating CMOS Mixers. IEEE Journal of Solid State Circuits 34, 772 (1999)

    Article  Google Scholar 

  38. Wang, X., et al.: A novel 1.5 V CMFB CMOS down-conversion mixer design for IEEE 802.11 A WLAN systems. In: Proceedings of the 2004 International Symposium on Circuits and Systems, ISCAS, vol. 4, p. 373 (2004)

    Google Scholar 

  39. Xuezhen, W., Weber, R.: A Novel Low Power Low Voltage LNA and Mixer for WLAN IEEE 802.11a Standard. In: Silicon Monolithic Integrated Circuits in RF Systems, p. 231 (2004)

    Google Scholar 

  40. Chu, Y.-K., et al.: 5.7GHz 0.18um CMOS Gain-Controlled LNA and Mixer for 802.11a Applications. In: Radio Frequency Integrated Circuits (RFIC) Symposium, p. 221 (2003)

    Google Scholar 

  41. Zencir, E., et al.: A Low-Power CMOS Mixer for Low-IF Receivers. In: Radio and Wireless Conference, RAWCON, p. 157 (2002)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alvarado, U., Bistué, G., Adín, I. (2011). Mixer Design. In: Low Power RF Circuit Design in Standard CMOS Technology. Lecture Notes in Electrical Engineering, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22987-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22987-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22986-2

  • Online ISBN: 978-3-642-22987-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics