Skip to main content

Morphogenesis of Cryptococcus neoformans

  • Chapter
  • First Online:
Morphogenesis and Pathogenicity in Fungi

Part of the book series: Topics in Current Genetics ((TCG,volume 22))

Abstract

Cryptococcus neoformans was first recognized as a human pathogen over 100 years ago when it was independently isolated from a patient with a tibial infection and from environmental sources (peach juice). This basidiomycete has subsequently been isolated from most regions of the world, causing a significant number of lethal infections each year, especially in AIDS patients. Originally described as a yeast-like fungus causing human and animal infections, C. neoformans is now known to undergo morphological transitions that are important for its survival and dissemination. Some of the signaling pathways that control yeast and hyphal morphogenesis in this organism are also central regulators of its pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    PubMed  CAS  Google Scholar 

  • Alspaugh JA, Perfect JR, Heitman J (1997) Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 11:3206–3217

    PubMed  CAS  Google Scholar 

  • Alspaugh JA, Cavallo LM, Perfect JR, Heitman J (2000) RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 36:352–365

    PubMed  CAS  Google Scholar 

  • Alspaugh JA, Pukkila-Worley R, Harashima T, Cavallo LM, Funnell D, Cox GM, Perfect JR, Kronstad JW, Heitman J (2002) Adenylyl cyclase functions downstream of the G-alpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot Cell 1:75–84

    PubMed  CAS  Google Scholar 

  • Bahn YS, Hicks JK, Giles SS, Cox GM, Heitman J (2004) Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot Cell 3:1476–1491

    PubMed  CAS  Google Scholar 

  • Bahn YS, Cox GM, Perfect JR, Heitman J (2005a) Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr Biol 15:2013–2020

    PubMed  CAS  Google Scholar 

  • Bahn YS, Kojima K, Cox GM, Heitman J (2005b) Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell 16:2285–2300

    PubMed  CAS  Google Scholar 

  • Baker RD, Haugen RK (1955) Tissue changes and tissue diagnosis in cryptococcosis: a study of twenty-six cases. Am J Clin Pathol 25:14–24

    PubMed  CAS  Google Scholar 

  • Baker LG, Specht CA, Donlin MJ, Lodge JK (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6:855–867

    PubMed  CAS  Google Scholar 

  • Ballou ER, Nichols CB, Miglia KJ, Kozubowski L, Alspaugh JA (2010) Two CDC42 paralogues modulate Cryptococcus neoformans thermotolerance and morphogenesis under host physiological conditions. Mol Microbiol 75:763–780

    PubMed  CAS  Google Scholar 

  • Banuett F, Quintanilla RH Jr, Reynaga-Pena CG (2008) The machinery for cell polarity, cell morphogenesis, and the cytoskeleton in the Basidiomycete fungus Ustilago maydis – a survey of the genome sequence. Fungal Genet Biol 45:S3–S14

    PubMed  CAS  Google Scholar 

  • Bassilana M, Arkowitz RA (2006) Rac1 and Cdc42 have different roles in Candida albicans development. Eukaryot Cell 5:321–329

    PubMed  CAS  Google Scholar 

  • Casselton LA, Olesnicky NS (1998) Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62:55–70

    PubMed  CAS  Google Scholar 

  • Chang EC, Barr M, Wang Y, Jung V, Xu HP, Wigler MH (1994) Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 79:131–141

    PubMed  CAS  Google Scholar 

  • Chang YC, Miller GF, Kwon-Chung KJ (2003) Importance of a developmentally regulated pheromone receptor of Cryptococcus neoformans for virulence. Infect Immun 71:4953–4960

    PubMed  CAS  Google Scholar 

  • Chant J (1999) Cell polarity in yeast. Annu Rev Cell Dev Biol 15:365–391

    PubMed  CAS  Google Scholar 

  • Chant J, Pringle JR (1991) Budding and cell polarity in Saccharomyces cerevisiae. Curr Opin Genet Dev 1:342–350

    PubMed  CAS  Google Scholar 

  • Chuck SL, Sande MA (1989) Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med 321:794–799

    PubMed  CAS  Google Scholar 

  • Cramer KL, Gerrald QD, Nichols CB, Price MS, Alspaugh JA (2006) The transcription factor Nrg1 mediates capsule, stress response, and pathogenesis in Cryptococcus neoformans. Eukaryot Cell 5:1147–1156

    PubMed  CAS  Google Scholar 

  • Cruz MC, Fox DS, Heitman J (2001) Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans. EMBO J 20:1020–1032

    PubMed  CAS  Google Scholar 

  • Cvrckova F, Virgilio CD, Manser E, Pringle JR, Nasmyth K (1995) Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev 9:1817–1830

    PubMed  CAS  Google Scholar 

  • D’Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J (2001) Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21:3179–3191

    PubMed  Google Scholar 

  • Davidson RC, Moore TD, Odom AR, Heitman J (2000) Characterization of the MFalpha pheromone of the human fungal pathogen Cryptococcus neoformans. Mol Microbiol 38:1017–1026

    PubMed  CAS  Google Scholar 

  • Davidson RC, Nichols CB, Cox GM, Perfect JR, Heitman J (2003) A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol Microbiol 49:469–485

    PubMed  CAS  Google Scholar 

  • del Poeta M, Toffaletti DL, Rude TH, Sparks SD, Heitman J, Perfect JR (1999) Cryptococcus neoformans differential gene expression detected in vitro and in vivo with green fluorescent protein. Infect Immun 67:1812–1820

    PubMed  Google Scholar 

  • Ekena JL, Stanton BC, Schiebe-Owens JA, Hull CM (2008) Sexual development in Cryptococcus neoformans requires CLP1, a target of the homeodomain transcription factors Sxi1alpha and Sxi2a. Eukaryot Cell 7:49–57

    PubMed  CAS  Google Scholar 

  • Fazekas G, Schwarz J (1958) Histology of experimental murine Cryptococcosis. Am J Pathol 34:517–529

    PubMed  CAS  Google Scholar 

  • Feldmesser M, Kress Y, Casadevall A (2001) Dynamic changes in the morphology of Cryptococcus neoformans during murine pulmonary infection. Microbiology 147:2355–2365

    PubMed  CAS  Google Scholar 

  • Fox DS, Cox GM, Heitman J (2003) Phospholipid-binding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans. Eukaryot Cell 2:1025–1035

    PubMed  CAS  Google Scholar 

  • Fraser JA, Diezmann S, Subaran RL, Allen A, Lengeler KB, Dietrich FS, Heitman J (2004) Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol 2:e384

    PubMed  Google Scholar 

  • Fu J, Mares C, Lizcano A, Liu Y, Wickes BL (2011) Insertional mutagenesis combined with an inducible filamentation phenotype reveals a conserved STE50 homologue in Cryptococcus neoformans that is required for monokaryotic fruiting and sexual reproduction. Mol Microbiol 79:990–1007

    PubMed  CAS  Google Scholar 

  • Fujita A, Lord M, Hiroko T, Hiroko F, Chen T, Oka C, Misumi Y, Chant J (2004) Rax1, a protein required for the establishment of the bipolar budding pattern in yeast. Gene 327:161–169

    PubMed  CAS  Google Scholar 

  • Giles SS, Dagenais TR, Botts MR, Keller NP, Hull CM (2009) Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect Immun 77:3491–3500

    PubMed  CAS  Google Scholar 

  • Gladfelter AS, Bose I, Zyla TR, Bardes ES, Lew DJ (2002) Septin ring assembly involves cycles of GTP loading and hydrolysis by Cdc42p. J Cell Biol 156:315–326

    PubMed  CAS  Google Scholar 

  • Golubev VI, Golubev NV (2003) A new basidiomycetous yeast species, Cryptococcus mycelialis, related to Holtermannia Saccardo et Traverso. Mikrobiologiia 72:822–827

    PubMed  CAS  Google Scholar 

  • Görlach J, Fox DS, Cutler NS, Cox GM, Perfect JR, Heitman J (2000) Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J 19:3618–3629

    PubMed  Google Scholar 

  • Hanseman DV (1905) Uber eine bisher nicht beobachtete Gehriner Krankung durch Hefen. Verh Dtsch Ges Pathol 9:21–24

    Google Scholar 

  • Ho J, Bretscher A (2001) Ras regulates the polarity of the yeast actin cytoskeleton through the stress response pathway. Mol Biol Cell 12:1541–1555

    PubMed  CAS  Google Scholar 

  • Hsueh YP, Shen WC (2005) A homolog of Ste6, the a-factor transporter in Saccharomyces cerevisiae, is required for mating but not for monokaryotic fruiting in Cryptococcus neoformans. Eukaryot Cell 4:147–155

    PubMed  CAS  Google Scholar 

  • Hsueh YP, Xue C, Heitman J (2007) G protein signaling governing cell fate decisions involves opposing Galpha subunits in Cryptococcus neoformans. Mol Biol Cell 18:3237–3249

    PubMed  CAS  Google Scholar 

  • Hsueh YP, Xue C, Heitman J (2009) A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J 28(9):1220–1233

    PubMed  CAS  Google Scholar 

  • Hull CM, Davidson RC, Heitman J (2002) Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1alpha. Genes Dev 16:3046–3060

    PubMed  CAS  Google Scholar 

  • Hull CM, Cox GM, Heitman J (2004) The alpha-specific cell identity factor Sxi1alpha is not required for virulence of Cryptococcus neoformans. Infect Immun 72:3643–3645

    PubMed  CAS  Google Scholar 

  • Idnurm A, Heitman J (2005) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95

    PubMed  Google Scholar 

  • Jung KW, Kim SY, Okagaki LH, Nielsen K, Bahn YS (2011) Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone-response MAPK signaling pathway. Fungal Genet Biol 48:154–165

    PubMed  CAS  Google Scholar 

  • Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schroppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, Levin LR, Buck J, Muhlschlegel FA (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15:2021–2026

    PubMed  CAS  Google Scholar 

  • Kopecka M, Gabriel M, Takeo K, Yamaguchi M, Svoboda A, Ohkusu M, Hata K, Yoshida S (2001) Microtubules and actin cytoskeleton in Cryptococcus neoformans compared with ascomycetous budding and fission yeasts. Eur J Cell Biol 80:303–311

    PubMed  CAS  Google Scholar 

  • Kozubowski L, Heitman J (2010) Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans. Mol Microbiol 75:658–675

    PubMed  CAS  Google Scholar 

  • Kozubowski L, Lee SC, Heitman J (2009) Signalling pathways in the pathogenesis of Cryptococcus. Cell Microbiol 11:370–380

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ (1975) A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67:1197–1200

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ (1976) Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68:821–833

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Bennett JE (1978) Distribution of a and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol 108:337–340

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Popkin TJ (1976) Ultrastructure of septal complex in Filobasidiella neoformans (Cryptococcus neoformans). J Bacteriol 126:524–528

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Edman JC, Wickes BL (1992) Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun 60:602–605

    PubMed  CAS  Google Scholar 

  • Leveleki L, Mahlert M, Sandrock B, Bolker M (2004) The PAK family kinase Cla4 is required for budding and morphogenesis in Ustilago maydis. Mol Microbiol 54:396–406

    PubMed  CAS  Google Scholar 

  • Levin EA (1937) Torula infection of the central nervous system. Arch Intern Med 59:667–684

    Google Scholar 

  • Li Y, Chang EC (2003) Schizosaccharomyces pombe Ras1 effector, Scd1, interacts with Klp5 and Klp6 kinesins to mediate cytokinesis. Genetics 165:477–488

    PubMed  CAS  Google Scholar 

  • Li L, Shen G, Zhang ZG, Wang YL, Thompson JK, Wang P (2007) Canonical heterotrimeric G proteins regulating mating and virulence of Cryptococcus neoformans. Mol Biol Cell 18:4201–4209

    PubMed  CAS  Google Scholar 

  • Lin X, Hull CM, Heitman J (2005) Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434:1017–1021

    PubMed  CAS  Google Scholar 

  • Lin X, Jackson JC, Feretzaki M, Xue C, Heitman J (2010) Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet 6:e1000953

    PubMed  Google Scholar 

  • Longtine MS, Theesfeld CL, McMillan JN, Weaver E, Pringle JR, Lew DJ (2000) Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol Cell Biol 20:4049–4061

    PubMed  CAS  Google Scholar 

  • Lurie HI, Shadomy HJ (1971) Morphological variations of a hypha-forming strain of Cryptococcus neoformans (Coward strain) in tissues of mice. Sabouraudia 9:10–14

    PubMed  CAS  Google Scholar 

  • Maeng S, Ko YJ, Kim GB, Jung KW, Floyd A, Heitman J, Bahn YS (2010) Comparative transcriptome analysis reveals novel roles of the Ras and cyclic AMP signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot Cell 9:360–378

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Tanaka S, Watanabe S (1987) Ultrastructure of the mitotic apparatus in Cryptococcus neoformans. J Med Vet Mycol 25:223–233

    PubMed  CAS  Google Scholar 

  • Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS, Moyrand F, Klengel T, Pearson DS, Geeves MA, Buck J, Levin LR, Muhlschlegel FA (2006) Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1. Eukaryot Cell 5:103–111

    PubMed  CAS  Google Scholar 

  • Moore RT (2000) Cytology and ultrastructure of yeasts and yeastlike fungi. In: Kurtzman CP, Fell JW (eds) The yeasts: a taxonomic study. Elsevier Science, Amsterdam, pp 33–44

    Google Scholar 

  • Moore TD, Edman JC (1993) The alpha-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13:1962–1970

    PubMed  CAS  Google Scholar 

  • Nichols CB, Fraser JA, Heitman J (2004) PAK Kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans. Mol Biol Cell 15:4476–4489

    PubMed  CAS  Google Scholar 

  • Nichols CB, Perfect Z, Alspaugh JA (2007) A Ras1-Cdc24 signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 63:1118–1130

    PubMed  CAS  Google Scholar 

  • Nichols CB, Ferreyra J, Ballou ER, Alspaugh JA (2009) Subcellular localization directs signaling specificity of the Cryptococcus neoformans Ras1 protein. Eukaryot Cell 8:181–189

    PubMed  CAS  Google Scholar 

  • Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16:2576–2589

    PubMed  CAS  Google Scholar 

  • Ohkusu M, Hata K, Takeo K (2001a) Bud emergence is gradually delayed from S to G2 with progression of growth phase in Cryptococcus neoformans. FEMS Microbiol Lett 194:251–255

    PubMed  CAS  Google Scholar 

  • Ohkusu M, Raclavsky V, Takeo K (2001b) Deficit in oxygen causes G(2) budding and unbudded G(2) arrest in Cryptococcus neoformans. FEMS Microbiol Lett 204:29–32

    PubMed  CAS  Google Scholar 

  • Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, Heitman J, Dromer F, Nielsen K (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6:e1000953

    PubMed  Google Scholar 

  • Panepinto J, Liu L, Ramos J, Zhu X, Valyi-Nagy T, Eksi S, Fu J, Jaffe HA, Wickes B, Williamson PR (2005) The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans. J Clin Invest 115:632–641

    PubMed  CAS  Google Scholar 

  • Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530

    PubMed  Google Scholar 

  • Park YD, Panepinto J, Shin S, Larsen P, Giles S, Williamson PR (2010) Mating pheromone in Cryptococcus neoformans is regulated by a transcriptional/degradative “futile” cycle. J Biol Chem 285:34746–34756

    PubMed  CAS  Google Scholar 

  • Price MS, Nichols CB, Alspaugh JA (2008) The Cryptococcus neoformans Rho-GDP dissociation inhibitor mediates intracellular survival and virulence. Infect Immun 76:5729–5737

    PubMed  CAS  Google Scholar 

  • Pukkila-Worley R, Alspaugh JA (2004) Cyclic AMP signaling in Cryptococcus neoformans. FEMS Yeast Res 4:361–367

    PubMed  CAS  Google Scholar 

  • Roemer T, Vallier L, Sheu Y, Snyder M (1998) The Spa2-related protein, Sph1p, is important for polarized growth in yeast. J Cell Sci 111:479–494

    PubMed  CAS  Google Scholar 

  • Rutherford JC, Lin X, Nielsen K, Heitman J (2008) Amt2 permease is required to induce ammonium-responsive invasive growth and mating in Cryptococcus neoformans. Eukaryot Cell 7:237–246

    PubMed  CAS  Google Scholar 

  • Sanders SL, Herskowitz I (1996) The BUD4 protein of yeast, required for axial budding, is localized to the mother/BUD neck in a cell cycle-dependent manner. J Cell Biol 134:413–427

    PubMed  CAS  Google Scholar 

  • Staudt MW, Kruzel EK, Shimizu K, Hull CM (2010) Characterizing the role of the microtubule binding protein Bim1 in Cryptococcus neoformans. Fungal Genet Biol 47:310–317

    PubMed  CAS  Google Scholar 

  • Sukroongreung S, Kitiniyom K, Nilakul C, Tantimavanich S (1998) Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. Med Mycol 36:419–424

    PubMed  CAS  Google Scholar 

  • Takeo K, Tanaka R, Miyaji M, Nishimura K (1995) Unbudded G2 as well as G1 arrest in the stationary phase of the basidiomycetous yeast Cryptococcus neoformans. FEMS Microbiol Lett 129:231–235

    PubMed  CAS  Google Scholar 

  • Takeo K, Ogura Y, Virtudazo E, Raclavsky V, Kawamoto S (2004) Isolation of a CDC28 homologue from Cryptococcus neoformans that is able to complement cdc28 temperature-sensitive mutants of Saccharomyces cerevisiae. FEMS Yeast Res 4:737–744

    PubMed  CAS  Google Scholar 

  • Todd RL, Herrmann WW (1936) The life cycle of the organism causing yeast meningitis. J Bacteriol 32:89–101

    PubMed  CAS  Google Scholar 

  • Tscharke RL, Lazera M, Chang YC, Wickes BL, Kwon-Chung KJ (2003) Haploid fruiting in Cryptococcus neoformans is not mating type alpha-specific. Fungal Genet Biol 39:230–237

    PubMed  CAS  Google Scholar 

  • Vallim MA, Nichols CB, Fernandes L, Cramer KL, Alspaugh JA (2005) A Rac homolog functions downstream of Ras1 to control hyphal differentiation and high-temperature growth in the pathogenic fungus Cryptococcus neoformans. Eukaryot Cell 4:1066–1078

    PubMed  CAS  Google Scholar 

  • Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J (2009) Spores as infectious propagules of Cryptococcus neoformans. Infect Immun 77:4345–4355

    PubMed  CAS  Google Scholar 

  • Virtudazo EV, Kawamoto S, Ohkusu M, Aoki S, Sipiczki M, Takeo K (2010) The single Cdk1-G1 cyclin of Cryptococcus neoformans is not essential for cell cycle progression, but plays important roles in the proper commitment to DNA synthesis and bud emergence in this yeast. FEMS Yeast Res 10:605–618

    PubMed  CAS  Google Scholar 

  • Wang P, Nichols CB, Lengeler KB, Cardenas ME, Cox GM, Perfect JR, Heitman J (2002) Mating-type-specific and nonspecific PAK kinases play shared and divergent roles in Cryptococcus neoformans. Eukaryot Cell 1:257–272

    PubMed  CAS  Google Scholar 

  • Wang P, Cutler J, King J, Palmer D (2004) Mutation of the regulator of G protein signaling Crg1 increases virulence in Cryptococcus neoformans. Eukaryot Cell 3:1028–1035

    PubMed  CAS  Google Scholar 

  • Waugh MS, Vallim MA, Heitman J, Alspaugh JA (2003) Ras1 controls pheromone expression and response during mating in Cryptococcus neoformans. Fungal Genet Biol 38:110–121

    PubMed  CAS  Google Scholar 

  • Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9:478–489

    PubMed  CAS  Google Scholar 

  • Wickes BL, Mayorga ME, Edman U, Edman JC (1996) Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. Proc Natl Acad Sci USA 93:7327–7331

    PubMed  CAS  Google Scholar 

  • Wickes BL, Edman U, Edman JC (1997) The Cryptococcus neoformans STE12alpha gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific. Mol Microbiol 26:951–960

    PubMed  CAS  Google Scholar 

  • Xue C, Bahn YS, Cox GM, Heitman J (2006) G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 17:667–679

    PubMed  CAS  Google Scholar 

  • Xue C, Tada Y, Dong X, Heitman J (2007) The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe 1:263–273

    PubMed  CAS  Google Scholar 

  • Xue C, Hsueh YP, Chen L, Heitman J (2008a) The RGS protein Crg2 regulates both pheromone and cAMP signalling in Cryptococcus neoformans. Mol Microbiol 70:379–395

    PubMed  CAS  Google Scholar 

  • Xue C, Hsueh YP, Heitman J (2008b) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32:1010–1032

    PubMed  CAS  Google Scholar 

  • Xue C, Liu T, Chen L, Li W, Liu I, Kronstad JW, Seyfang A, Heitman J (2010a) Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. MBio 1(1):e00084-10

    PubMed  Google Scholar 

  • Xue C, Wang Y, Hsueh YP (2010b) Assessment of constitutive activity of a G protein-coupled receptor, CPR2, in Cryptococcus neoformans by heterologous and homologous methods. Methods Enzymol 484:397–412

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Ohkusu M, Biswas SK, Kawamoto S (2007) Cytological study of cell cycle of the pathogenic yeast Cryptococcus neoformans. Nihon Ishinkin Gakkai Zasshi 48:147–152

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Biswas SK, Ohkusu M, Takeo K (2009) Dynamics of the spindle pole body of the pathogenic yeast Cryptococcus neoformans examined by freeze-substitution electron microscopy. FEMS Microbiol Lett 296:257–265

    PubMed  CAS  Google Scholar 

  • Yue C, Cavallo LM, Alspaugh JA, Wang P, Cox GM, Perfect JR, Heitman J (1999) The STE12alpha homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics 153:1601–1615

    PubMed  CAS  Google Scholar 

  • Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6:e1000945

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrew Alspaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ballou, E.R., Alspaugh, J.A., Nichols, C.B. (2012). Morphogenesis of Cryptococcus neoformans . In: Pérez-Martín, J., Di Pietro, A. (eds) Morphogenesis and Pathogenicity in Fungi. Topics in Current Genetics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22916-9_10

Download citation

Publish with us

Policies and ethics