Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6832))

Included in the following conference series:

Abstract

The avalanche of next generation sequencing data has led to a rapid increase of annotated microRNAs in the last few years. Many of them are specific to individual species or rather narrow clades. A closer inspection of the current version of miRBase shows that dozens of entries conflict with other ncRNAs, in particular snoRNAs. With few exceptions, these cases show little similarities to canonical microRNAs, however, and thus they should be considered as mis-annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terns, M.P., Terns, R.M.: Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr. 10, 17–39 (2002)

    Google Scholar 

  2. Kawaji, H., Nakamura, M., Takahashi, Y., Sandelin, A., Katayama, S., Email, F.S., Daub, C., Kai, C., Jun Kawai, J., Yasuda, J., Carninci, P., Hayashizaki, Y.: Hidden layers of human small RNAs. BMC Genomics 9, 157 (2008)

    Article  Google Scholar 

  3. Taft, R.J., Glazov, E.A., Lassmann, T., Hayashizaki, Y., Carninci, P., Mattick, J.S.: Small RNAs derived from snoRNAs. RNA 15, 1233–1240 (2009)

    Article  Google Scholar 

  4. Langenberger, D., Bermudez-Santana, C., Stadler, P.F., Hoffmann, S.: Identification and classification of small RNAs in transcriptome sequence data. In: Pac. Symp. Biocomput., vol. 15, pp. 80–87 (2010)

    Google Scholar 

  5. Brameier, M., Herwig, A., Reinhardt, R., Walter, L., Gruber, J.: Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 39, 675–686 (2011)

    Article  Google Scholar 

  6. Ender, C., Krek, A., Friedländer, M.R., Beitzinger, M., Weinmann, L., Chen, W., Pfeffer, S., Rajewsky, N., Meister, G.: A human snoRNA with microRNA-like functions. Mol. Cell 32, 519–528 (2008)

    Article  Google Scholar 

  7. Meiri, E., Levy, A., Benjamin, H., Ben-David, M., Cohen, L., Dov, A., Dromi, N., Elyakim, E., Yerushalmi, N., Zion, O., Lithwick-Yanai, G., Sitbon, E.: Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res. 38, 6234–6246 (2010)

    Article  Google Scholar 

  8. Stadler, P.F., Chen, J.J.L., Hackermüller, J., Hoffmann, S., Horn, F., Khaitovich, P., Kretzschmar, A.K., Mosig, A., Prohaska, S.J., Qi, X., Schutt, K., Ullmann, K.: Evolution of vault RNAs. Mol. Biol. Evol. 26, 1975–1991 (2009)

    Article  Google Scholar 

  9. Persson, H., Kvist, A., Vallon-Christersson, J., Medstrand, P., Borg, A., Rovira, C.: The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat. Cell Biol. 11, 1268–1271 (2009)

    Article  Google Scholar 

  10. Mosig, A., Stadler, P.F.: Evolution of vault RNAs. In: N, N. (ed.) Encyclopedia of Life Sciences, Wiley-Blackwell, Hoboken, NJ (2011), doi:10.1002/9780470015902.a0022883

    Google Scholar 

  11. Lee, Y.S., Shibata, Y., Malhotra, A., Dutta, A.: A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649 (2009)

    Article  Google Scholar 

  12. Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W., Green, P.J., Barton, G.J., Hutvagner, G.: Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147–2160 (2009)

    Article  Google Scholar 

  13. Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A.Z., Kay, M.A.: Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695

    Google Scholar 

  14. Findeiß, S., Langenberger, D., Stadler, P.F., Hoffmann, S.: Traces of post-transcriptional RNA modifications in deep sequencing data. Biol. Chem. 392, 305–313 (2011)

    Article  Google Scholar 

  15. Schopman, N.C.T., Heynen, S., Haasnoot, J., Berkhout, B.: A miRNA-tRNA mix-up: tRNA origin of proposed miRNA. RNA Biology 7, 573–576 (2010)

    Article  Google Scholar 

  16. Miyoshi, K., Miyoshi, T., Siomi, H.: Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol. Genet. Genomics 284, 95–103 (2010)

    Article  Google Scholar 

  17. Borchert, G.M., Lanier, W., Davidson, B.L.: RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13, 1097–1101 (2006)

    Article  Google Scholar 

  18. Bortolin-Cavaillé, M.L., Dance, M., Weber, M., Cavaillé, J.: C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res. 37, 3464–3473 (2009)

    Article  Google Scholar 

  19. Canella, D., Praz, V., Reina, J.H., Cousin, P., Hernandez, N.: Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res. 20, 710–721 (2010)

    Article  Google Scholar 

  20. Berezikov, E., Chung, W.J., Willis, J., Cuppen, E., Lai, E.C.: Mammalian mirtron genes. Mol. Cell 28, 328–336 (2007)

    Article  Google Scholar 

  21. Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M., Lai, E.C.: The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007)

    Article  Google Scholar 

  22. Ruby, G.J., Jan, C.H., Bartell, D.P.: Intronic microRNA precursors that bypass Drosha processing. Nature 48, 83–86 (2007)

    Article  Google Scholar 

  23. Chung, W.J., Agius, P., Westholm, J.O., Chen, M., Okamura, K., Robine, N., Leslie, C.S., Lai, E.C.: Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res. 21, 286–300 (2011)

    Article  Google Scholar 

  24. Flynt, A.S., Greimann, J.C., Chung, W.J., Lima, C.D., Lai, E.C.: MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol. Cell 38, 900–907 (2010)

    Article  Google Scholar 

  25. Chong, M.M.W., Zhang, G., Cheloufi, S., Neubert, T.A., Hannon, G.J., Littman, D.R.: Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev. 24, 1951–1960 (2010)

    Article  Google Scholar 

  26. Scott, M.S., Avolio, F., Ono, M., Lamond, A.I., Barton, G.J.: Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput. Biol. 5, e100050 (2009)

    Article  Google Scholar 

  27. Politz, J.C., Hogan, E.M., Pederson, T.: MicroRNAs with a nucleolar location. RNA 15, 1705–1715 (2009)

    Article  Google Scholar 

  28. Griffiths-Jones, S.: The microRNA Registry. Nucleic Acids Res. 32, D109–D111 (2004)

    Article  Google Scholar 

  29. Mosig, A., Guofeng, M., Stadler, B.M.R., Stadler, P.F.: Evolution of the vertebrate Y RNA cluster. Th. Biosci. 126, 9–14 (2007)

    Article  Google Scholar 

  30. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R.: Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003)

    Article  Google Scholar 

  31. Hoffmann, S., Otto, C., Kurtz, S., Sharma, C., Khaitovich, P., Vogel, J., Stadler, P.F., Hackermüller, J.: Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comp. Biol. 5, e1000502 (2009)

    Article  Google Scholar 

  32. Weber, M.J.: Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet. 2, e205 (2006)

    Article  Google Scholar 

  33. Schmitz, J., Zemann, A., Churakov, G., Kuhl, H., Grützner, F., Reinhardt, R., Brosius, J.: Retroposed SNOfall–a mammalian-wide comparison of platypus snoRNAs. Genome Res. 18, 1005–1010 (2008)

    Article  Google Scholar 

  34. Smalheiser, N.R., Torvik, V.I.: Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322–326 (2005)

    Article  Google Scholar 

  35. Hertel, J., Stadler, P.F.: Hairpins in a haystack: Recognizing microRNA precursors in comparative genomics data. Bioinformatics 22, e197–e202 (2006)

    Article  Google Scholar 

  36. Hertel, J., Hofacker, I.L., Stadler, P.F.: snoReport: Computational identification of snoRNAs with unknown targets. Bioinformatics 24, 158–164 (2008)

    Article  Google Scholar 

  37. Hertel, J., Lindemeyer, M., Missal, K., Fried, C., Tanzer, A., Flamm, C., Hofacker, I.L., Stadler, P.F.: Students of Bioinformatics Computer Labs 2004 & 2005: The expansion of the metazoan microRNA repertoire. BMC Genomics 7, 15 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Langenberger, D., Bartschat, S., Hertel, J., Hoffmann, S., Tafer, H., Stadler, P.F. (2011). MicroRNA or Not MicroRNA?. In: Norberto de Souza, O., Telles, G.P., Palakal, M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2011. Lecture Notes in Computer Science(), vol 6832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22825-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22825-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22824-7

  • Online ISBN: 978-3-642-22825-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics