Skip to main content

Expression Profiling of ncRNAs Employing RNP Libraries and Custom LNA/DNA Microarray Analysis

  • Chapter
  • First Online:
Regulatory RNAs

Abstract

Recently, it has been shown by the ENCODE consortium that more than 90% of the human genome might be transcribed. While only about 1.5% of these transcripts correspond to mRNAs, it was proposed that the majority of them (i.e., 88.5%) might correspond to regulatory noncoding RNAs (ncRNAs). Numerous protocols dedicated to the generation of cDNA libraries coupled to next-generation sequencing (NGS) technologies are currently available to identify novel ncRNA species, and we have recently developed a novel procedure for the generation of ribonucleoprotein (RNP) libraries. To validate differential expression of ncRNAs identified using our or any library generation approach, we describe an innovative ncRNA profiling approach based on microarray technology. Employing LNA probes, dedicated to the analysis of small/microRNAs, and DNA probes, dedicated to the study of longer ncRNAs, our platform enables the study of most ncRNAs independently of their length in a single experiment. Detailed methodological solution description includes the automated design of probes to be spotted on the array, optimization of spotting and labeling of probes, as well as hybridization conditions. All the steps have been improved for the analysis of ncRNAs, which are generally difficult to study owing to their peculiarities in terms of secondary structure or abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. doi:gb-2010-11-10-r106 [pii] 10.1186/gb-2010-11-10-r106

    Article  PubMed  CAS  Google Scholar 

  • Anthony RM, Schuitema AR, Chan AB, Boender PJ, Klatser PR, Oskam L (2003) Effect of secondary structure on single nucleotide polymorphism detection with a porous microarray matrix; implications for probe selection. Biotechniques 34(5):1082–1086, 1088–1089

    Google Scholar 

  • Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, Bonilla F, de Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22(6):756–769. doi:22/6/756 [pii] 10.1101/gad.455708

    Article  PubMed  CAS  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Xu M, Haidar JN, Yu Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816. doi:doi:10.1038/nature05874

    Article  PubMed  CAS  Google Scholar 

  • Brosius J (2005) Waste not, want not–transcript excess in multicellular eukaryotes. Trends Genet 21(5):287–288. doi:S0168-9525(05)00060-0 [pii] 10.1016/j.tig.2005.02.014

    Article  PubMed  CAS  Google Scholar 

  • Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF (2011) The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res 39:D195–201. doi:gkq1028 [pii] 10.1093/nar/gkq1028, (Database issue):D195–201

    Article  PubMed  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563. doi:309/5740/1559 [pii] 10.1126/science.1112014

    Article  PubMed  CAS  Google Scholar 

  • Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3(2):321–329. doi:nprot.2008.4 [pii] 10.1038/nprot.2008.4

    Article  PubMed  CAS  Google Scholar 

  • Chandler DP, Newton GJ, Small JA, Daly DS (2003) Sequence versus structure for the direct detection of 16S rRNA on planar oligonucleotide microarrays. Appl Environ Microbiol 69(5):2950–2958

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308(5725):1149–1154. doi:1108625 [pii] 10.1126/science. 1108625

    Article  PubMed  CAS  Google Scholar 

  • Coppee JY (2008) Do DNA microarrays have their future behind them? Microbes Infect 10(9):1067–1071. doi:S1286-4579(08)00179-2 [pii] 10.1016/j.micinf.2008.07.003

    Article  PubMed  CAS  Google Scholar 

  • Cox WG, Beaudet MP, Agnew JY, Ruth JL (2004) Possible sources of dye-related signal correlation bias in two-color DNA microarray assays. Anal Biochem 331(2):243–254. doi:10.1016/j.ab.2004.05.010 S0003269704004166 [pii]

    Article  PubMed  Google Scholar 

  • Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Solda G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18(9):1433–1445. doi:gr.078378.108 [pii] 10.1101/gr.078378.108

    Article  PubMed  CAS  Google Scholar 

  • Dufva M, Petersen J, Poulsen L (2009) Increasing the specificity and function of DNA microarrays by processing arrays at different stringencies. Anal Bioanal Chem 395(3):669–677. doi:10.1007/s00216-009-2848-z

    Article  PubMed  CAS  Google Scholar 

  • Eklund AC, Friis P, Wernersson R, Szallasi Z (2010) Optimization of the BLASTN substitution matrix for prediction of non-specific DNA microarray hybridization. Nucleic Acids Res 38(4):e27. doi:gkp1116 [pii] 10.1093/nar/gkp1116

    Article  PubMed  Google Scholar 

  • Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33(1):439–447. doi:33/1/439 [pii] 10.1093/nar/gki193

    Article  PubMed  CAS  Google Scholar 

  • Fang H, Fan X, Guo L, Shi L, Perkins R, Ge W, Dragan YP, Tong W (2007) Self-self hybridization as an alternative experiment design to dye swap for two-color microarrays. OMICS 11(1):14–24. doi:10.1089/omi.2006.0002

    Article  PubMed  CAS  Google Scholar 

  • Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415. doi:nbt1394 [pii] 10.1038/nbt1394

    Article  PubMed  Google Scholar 

  • Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39:D876–882. doi:gkq963 [pii] 10.1093/nar/gkq963, (Database issue):D876–882

    Article  PubMed  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108. doi:nrg2504 [pii] 10.1038/nrg2504

    Article  PubMed  CAS  Google Scholar 

  • Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, Benjamin H, Kushnir M, Cholakh H, Melamed N, Bentwich Z, Hod M, Goren Y, Chajut A (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3(9):e3148. doi:10.1371/journal.pone.0003148

    Article  PubMed  Google Scholar 

  • Goff LA, Yang M, Bowers J, Getts RC, Padgett RW, Hart RP (2005) Rational probe optimization and enhanced detection strategy for microRNAs using microarrays. RNA Biol 2(3):93–100. doi:2059 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342:129–138. doi:1-59745-123-1:129 [pii] 10.1385/1-59745-123-1:129

    PubMed  CAS  Google Scholar 

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076. doi:nature08975 [pii] 10.1038/nature08975

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi:nature07672 [pii] 10.1038/nature07672

    Article  PubMed  CAS  Google Scholar 

  • Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11(7):476–486. doi:nrg2795 [pii] 10.1038/nrg2795

    PubMed  CAS  Google Scholar 

  • Huarte M, Rinn JL (2010) Large non-coding RNAs: missing links in cancer? Hum Mol Genet 19(R2):R152–161. doi:doi:ddq353 [pii] 10.1093/hmg/ddq353

    Article  PubMed  CAS  Google Scholar 

  • Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P (2009) Ensembl 2009. Nucleic Acids Res 37:D690–697. doi:gkn828 [pii] 10.1093/nar/gkn828, (Database issue):D690–697

    Article  PubMed  CAS  Google Scholar 

  • Huttenhofer A, Vogel J (2006) Experimental approaches to identify non-coding RNAs. Nucleic Acids Res 34(2):635–646. doi:34/2/635 [pii] 10.1093/nar/gkj469

    Article  PubMed  Google Scholar 

  • Hutzinger R, Mrazek J, Vorwerk S, Huttenhofer A (2010) NcRNA-microchip analysis: a novel approach to identify differential expression of noncoding RNAs. RNA Biol 7(5):586–595. doi:12971 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ishitani R, Yokoyama S, Nureki O (2008) Structure, dynamics, and function of RNA modification enzymes. Curr Opin Struct Biol 18(3):330–339. doi:S0959-440X(08)00069-9 [pii] 10.1016/j.sbi.2008.05.003

    Article  PubMed  CAS  Google Scholar 

  • Jochl C, Rederstorff M, Hertel J, Stadler PF, Hofacker IL, Schrettl M, Haas H, Huttenhofer A (2008) Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res 36(8):2677–2689. doi:gkn123 [pii] 10.1093/nar/gkn123

    Article  PubMed  Google Scholar 

  • Jordan BR (2010) Is there a niche for DNA microarrays in molecular diagnostics? Expert Rev Mol Diagn 10(7):875–882. doi:10.1586/erm.10.74

    Article  PubMed  CAS  Google Scholar 

  • Kampa D, Cheng J, Kapranov P, Yamanaka M, Brubaker S, Cawley S, Drenkow J, Piccolboni A, Bekiranov S, Helt G, Tammana H, Gingeras TR (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14(3):331–342. doi:10.1101/gr.2094104 14/3/331 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Hallinan J, Mattick J, Hume DA, Lipovich L, Batalov S, Engstrom PG, Mizuno Y, Faghihi MA, Sandelin A, Chalk AM, Mottagui-Tabar S, Liang Z, Lenhard B, Wahlestedt C (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566. doi:309/5740/1564 [pii] 10.1126/science.1112009

    Article  PubMed  Google Scholar 

  • Kawaji H, Severin J, Lizio M, Waterhouse A, Katayama S, Irvine KM, Hume DA, Forrest AR, Suzuki H, Carninci P, Hayashizaki Y, Daub CO (2009) The FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Genome Biol 10(4):R40. doi:gb-2009-10-4-r40 [pii] 10.1186/gb-2009-10-4-r40

    Article  PubMed  Google Scholar 

  • Kocerha J, Kauppinen S, Wahlestedt C (2009) microRNAs in CNS disorders. Neuromolecular Med 11(3):162–172. doi:10.1007/s12017-009-8066-1

    Article  PubMed  CAS  Google Scholar 

  • Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, Liu Z, Jiang F (2010) Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer 9:198. doi:1476-4598-9-198 [pii] 10.1186/1476-4598-9-198

    Article  PubMed  Google Scholar 

  • Liu X, Fortin K, Mourelatos Z (2008) MicroRNAs: biogenesis and molecular functions. Brain Pathol 18(1):113–121. doi:BPA121 [pii] 10.1111/j.1750-3639.2007.00121.x

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:nature03702 [pii] 10.1038/nature03702

    Article  PubMed  CAS  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517. doi:gr.079558.108 [pii] 10.1101/gr.079558.108

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Keller W (1998) Tailing and 3′-end labeling of RNA with yeast poly(A) polymerase and various nucleotides. RNA 4(2):226–230

    PubMed  CAS  Google Scholar 

  • Martin J, Bruno VM, Fang Z, Meng X, Blow M, Zhang T, Sherlock G, Snyder M, Wang Z (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics 11:663. doi:1471-2164-11-663 [pii] 10.1186/1471-2164-11-663

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14(1):R121–132. doi:1:R121–132. doi:14/suppl_1/R121 [pii] 10.1093/hmg/ddi101, Spec No 1:R121–132

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 Spec No 1:R17–29. doi:15/suppl_1/R17 [pii] 10.1093/hmg/ddl046

    Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105(2):716–721. doi:0706729105 [pii] 10.1073/pnas.0706729105

    Article  PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46. doi:nrg2626 [pii] 10.1038/nrg2626

    Article  PubMed  CAS  Google Scholar 

  • Mituyama T, Yamada K, Hattori E, Okida H, Ono Y, Terai G, Yoshizawa A, Komori T, Asai K (2009) The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res 37 (Database issue):D89–92. doi:gkn805 [pii] 10.1093/nar/gkn805

    Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. doi:nmeth.1226 [pii] 10.1038/nmeth.1226

    Article  PubMed  CAS  Google Scholar 

  • Nahkuri S, Taft RJ, Korbie DJ, Mattick JS (2008) Molecular evolution of the HBII-52 snoRNA cluster. J Mol Biol 381(4):810–815. doi:S0022-2836(08)00773-0 [pii] 10.1016/j.jmb.2008.06.057

    Article  PubMed  CAS  Google Scholar 

  • Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461(7265):814–818. doi:nature08390 [pii] 10.1038/nature08390

    Article  PubMed  CAS  Google Scholar 

  • Pieler R, Sanchez-Cabo F, Hackl H, Thallinger GG, Trajanoski Z (2004) ArrayNorm: comprehensive normalization and analysis of microarray data. Bioinformatics 20(12):1971–1973. doi:10.1093/bioinformatics/bth174 bth174 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Rederstorff M, Huttenhofer A (2011a) cDNA library generation from ribonucleoprotein particles. Nat Protoc 6(2):166–174. doi:nprot.2010.186 [pii] 10.1038/nprot.2010.186

    Article  PubMed  CAS  Google Scholar 

  • Rederstorff M, Huttenhofer A (2011) Experimental RNomics, A global approach to identify non-coding RNAs in model organisms, and RNPomics to analyze the non-coding RNP transcriptome. In: Hartman RK, Westhof E (eds) Handbook of RNA biochemistry. Wiley VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Rederstorff M, Bernhart SH, Tanzer A, Zywicki M, Perfler K, Lukasser M, Hofacker IL, Huttenhofer A (2010) RNPomics: defining the ncRNA transcriptome by cDNA library generation from ribonucleo-protein particles. Nucleic Acids Res 38(10):e113. doi:gkq057 [pii] 10.1093/nar/gkq057

    Article  PubMed  Google Scholar 

  • Redkar RJ, Schultz NA, Scheumann V, Burzio LA, Haines DE, Metwalli E, Becker O, Conzone SD (2006) Signal and sensitivity enhancement through optical interference coating for DNA and protein microarray applications. J Biomol Tech 17(2):122–130. doi:17/2/122 [pii]

    PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. doi:btp616 [pii] 10.1093/bioinformatics/btp616

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A, Lebanony D, Goren Y, Silberschein E, Targan N, Ben-Ari A, Gilad S, Sion-Vardy N, Tobar A, Feinmesser M, Kharenko O, Nativ O, Nass D, Perelman M, Yosepovich A, Shalmon B, Polak-Charcon S, Fridman E, Avniel A, Bentwich I, Bentwich Z, Cohen D, Chajut A, Barshack I (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26(4):462–469. doi:nbt1392 [pii] 10.1038/nbt1392

    Article  PubMed  CAS  Google Scholar 

  • Saxena A, Carninci P (2010) Whole transcriptome analysis: what are we still missing? Wiley Interdiscip Rev Syst Biol Med. doi:10.1002/wsbm.135

    Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33 (Web Server issue):W686–689. doi:33/suppl_2/W686 [pii] 10.1093/nar/gki366

    Google Scholar 

  • Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32(4):e43. doi:10.1093/nar/gnh040 32/4/e43 [pii]

    Article  PubMed  Google Scholar 

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18(1):207–208

    Article  PubMed  CAS  Google Scholar 

  • Wernersson R, Nielsen HB (2005) OligoWiz 2.0 – integrating sequence feature annotation into the design of microarray probes. Nucleic Acids Res 33 (Web Server issue):W611–615. doi:33/suppl_2/W611 [pii] 10.1093/nar/gki399

    Google Scholar 

  • Willenbrock H, Salomon J, Sokilde R, Barken KB, Hansen TN, Nielsen FC, Moller S, Litman T (2009) Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA 15(11):2028–2034. doi:rna.1699809 [pii] 10.1261/rna.1699809

    Article  PubMed  CAS  Google Scholar 

  • Willingham AT, Gingeras TR (2006) TUF love for “junk” DNA. Cell 125(7):1215–1220. doi:S0092-8674(06)00767-7 [pii] 10.1016/j.cell.2006.06.009

    Article  PubMed  CAS  Google Scholar 

  • Zywicki M, Bakowska-Zywicka K, Polacek N (2011) Identification of functional RNA processing products from RNA-seq data. Manuscript in preparation

    Google Scholar 

Download references

Acknowledgments

Lorraine University and the Austrian Ministry of Science and Research (GEN-AU project consortium “noncoding RNAs” D-110420-011-015 to A.H. and M.S.) are acknowledged for financial support.

M.Z. was financed on a grant from the Austrian Ministry of Science and Research (D-110420-012-012).

K.S. was financed on a FWF grant (Project Number 2 F012060-03, Signal Processing in Neurons (SPIN) Ph.D. program to A.H.).

M.K. was financed on a GEN-AU grant from the Austrian Ministry of Science and Research (Project Number D-110420-011-015 to M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Rederstorff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skreka, K., Karbiener, M., Zywicki, M., Hüttenhofer, A., Scheideler, M., Rederstorff, M. (2012). Expression Profiling of ncRNAs Employing RNP Libraries and Custom LNA/DNA Microarray Analysis. In: Mallick, B., Ghosh, Z. (eds) Regulatory RNAs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22517-8_9

Download citation

Publish with us

Policies and ethics