Skip to main content

Transient Full Maxwell Computation of Slow Processes

  • Chapter
  • First Online:
Scientific Computing in Electrical Engineering SCEE 2010

Part of the book series: Mathematics in Industry ((TECMI,volume 16))

Abstract

This article deals with finite element solution of the full linear Maxwell’s equations. The focus lies on the transient simulation of slow processes, i.e. of processes, where wave propagation does not play a role. We employ an implicit Euler method for time discretization of the A, φ-based Galerkin-formulation with Coulomb-gauge. We propose a novel stabilization technique that makes possible the use of very large timesteps. This is of supreme importance for efficient simulation of slow processes in order to keep the number of timesteps reasonably small. The greatly improved robustness in comparison with a standard formulation is demonstrated through numerical experiments. As an example we simulate the lightning impulse test of an industrial dry-type transformer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comsol website, URL http://www.comsol.com

  2. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hiptmair, R., Krämer, F., Ostrowski, J.: A robust Maxwell formulation for all frequencies. IEEE Trans. Magn. 44(6), 682–685 (2008)

    Article  Google Scholar 

  4. Hiptmair, R., Sterz, O.: Current and voltage excitations for the eddy current model. Int. J. Numer. Model 18(1), 1–21 (2005)

    Article  MATH  Google Scholar 

  5. International standard IEC 60076-11: Dry-type transformers. International Electrotechnical Commission, Geneve, Switzerland (2004)

    Google Scholar 

  6. Ostrowski, J., Bebendorf, M., Hiptmair, R., Krämer, F.: H-matrix based operator preconditioning for full maxwell at low frequencies. IEEE Trans. magn. 46(8), 3193–3196 (2010)

    Article  Google Scholar 

  7. Pardiso website, www.pardiso-project.org

  8. van Rienen, U.: Numerical methods in computational electrodynamics. In: Lecture Notes in Computational Science and Engineering, vol. 12. Springer, Berlin (2001)

    Google Scholar 

  9. Sabariego, R., Dular, P., Gyselinck, J.: Time-domain homogenization of windings in 3-d finite element models. IEEE Trans. magn. 44(6), 1302–1305 (2008)

    Article  Google Scholar 

  10. Schmidt, K., Sterz, O., Hiptmair, R.: Estimating the eddy-current modelling error. IEEE Trans. Magn. 44(6), 686–689 (2008)

    Article  Google Scholar 

  11. Steinmetz, T., Kurz, S., Clemens, M.: Domains of validity of quasistatic and quasistationary field approximations. Submitted to COMPEL 30(4), 1237–1247 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ostrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ostrowski, J., Hiptmair, R., Krämer, F., Smajic, J., Steinmetz, T. (2012). Transient Full Maxwell Computation of Slow Processes. In: Michielsen, B., Poirier, JR. (eds) Scientific Computing in Electrical Engineering SCEE 2010. Mathematics in Industry(), vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22453-9_10

Download citation

Publish with us

Policies and ethics