Skip to main content

Transcription and Transcription Regulation in Chloroplasts and Mitochondria of Higher Plants

  • Chapter
  • First Online:
Organelle Genetics

Abstract

The mitochondrial and plastid transcription machineries of plants are highly complex and reflect the eukaryotization of the genetic systems of the organelles. Plastid transcription relies on two types of different RNA polymerases (RNAPs): one plastid-encoded eubacterial-type polymerase (PEP) and at least one nuclear-encoded phage-type RNAP (NEP). PEP uses σ70-like promoters, whereas NEP recognizes promoter sequences resembling mitochondrial promoter motifs. Mitochondrial transcription, too, is performed by at least one nuclear-encoded phage-type RNA polymerase. Mitochondrial promoters transcribed by this RNAP are variable and only a subset can be distinguished by conserved sequence motifs. The organellar phage-type RNAPs are encoded by a small nuclear gene family that consists of three RpoT genes in eudicot and two RpoT genes in monocot plants. While the plastid PEP is complemented by nuclear-encoded σ-factors to confer promoter-specific binding, the principal specificity factors that interact with the mitochondrial and plastid (NEP) RpoT polymerases have not been identified yet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison LA, Maliga P (1995) Light-responsive and transcription-enhancing elements regulate the plastid psbD core promoter. EMBO J 14:3721–3730

    PubMed  CAS  Google Scholar 

  • Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    PubMed  CAS  Google Scholar 

  • Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustün S, Melzer M, Petersen K, Lein W, Börnke F (2010) Plastidial Thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22:1498–1515

    PubMed  CAS  Google Scholar 

  • Azevedo J, Courtois F, Hakimi M-A, Demarsy E, Lagrange T, Alcaraz J-P, Jaiswal P, Maréchal-Drouard L, Lerbs-Mache L (2008) Intraplastidial trafficking of a phage-type RNA polymerase is mediated by a thylakoid RING-H2 protein. Proc Natl Acad Sci USA 105:9123–9128

    PubMed  CAS  Google Scholar 

  • Baba K, Schmidt J, Espinosa-Ruiz A, Villarejo A, Shiina T, Gardestrom P, Sane AP, Bhalerao RP (2004) Organellar gene transcription and early seedling development are affected in the RpoT;2 mutant of Arabidopsis. Plant J 38:38–48

    PubMed  CAS  Google Scholar 

  • Baeza L, Bertrand A, Mache R, Lerbs-Mache S (1991) Characterization of a protein binding sequence in the promoter region of the 16S rRNA gene of the spinach chloroplast genome. Nucleic Acids Res 19:3577–3581

    PubMed  CAS  Google Scholar 

  • Baginsky S, Gruissem W (2009) The chloroplast kinase network: new insights from large-scale phosphoproteome profiling. Mol Plant 2:1141–1153

    Google Scholar 

  • Balsera M, Soll J, Buchanan BB (2010) Redox extends its regulatory reach to chloroplast protein import. Trends Plant Sci 5:515–521

    Google Scholar 

  • Baumgartner BJ, Rapp JC, Mullet JE (1993) Plastid genes encoding the transcription/translation apparatus are differentially transcribed early in barley (Hordeum vulgare) chloroplast development: evidence for selective stabilization of psbA mRNA. Plant Physiol 101:781–791

    PubMed  CAS  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756

    PubMed  CAS  Google Scholar 

  • Berg S, Krause K, Krupinska K (2004) The rbcL genes of two Cuscuta species, C. gronovii and C. subinclusa, are transcribed by the nuclear-encoded plastid RNA polymerase (NEP). Planta 219:541–546

    PubMed  CAS  Google Scholar 

  • Binder S, Brennicke A (2003) Gene expression in plant mitochondria: transcriptional and post-transcriptional control. Philos Trans R Soc Lond B Biol Sci 358:181–188; discussion 188–189

    PubMed  CAS  Google Scholar 

  • Binder S, Marchfelder A, Brennicke A (1996) Regulation of gene expression in plant mitochondria. Plant Mol Biol 32:303–314

    PubMed  CAS  Google Scholar 

  • Bligny M, Courtois F, Thaminy S, Chang CC, Lagrange T, Baruah-Wolff J, Stern D, Lerbs-Mache S (2000) Regulation of plastid rDNA transcription by interaction of CDF2 with two different RNA polymerases. EMBO J 19:1851–1860

    PubMed  CAS  Google Scholar 

  • Bohne A-V, Irihimovitch V, Weihe A, Stern D (2006) Chlamydomonas reinhardii encodes a single sigma70-like factor which likely functions in chloroplast transcription. Curr Genet 49:333–340

    PubMed  CAS  Google Scholar 

  • Bohne A-V, Weihe A, Börner T (2009) Interaction of Arabidopsis phage-type RNA polymerases with transfer RNAs. Endocytobiosis Cell Res 19:63–69

    Google Scholar 

  • Bradbeer JW, Atkinson YE, Börner T, Hagemann R (1979) Cytoplasmic synthesis of plastid polypeptides may be controlled by plastid-synthesized RNA. Nature 279:816–817

    CAS  Google Scholar 

  • Bräutigam K, Dietzel L, Kleine T, Ströher E, Wormuth D, Dietz K, Radke D, Wirtz M, Hell R, Dörmann P, Nunes-Nesi A, Schauer N, Fernie A, Oliver S, Geigenberger P, Leister D, Pfannschmidt T (2009) Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. Plant Cell 21:2715–2732

    PubMed  Google Scholar 

  • Brown NJ, Sullivan JA, Gray JC (2005) Light and plastid signals regulate the expression of the pea plastocyanin gene through a common region at the 5′ end of the coding region. Plant J 43:541–552

    PubMed  CAS  Google Scholar 

  • Bünger W, Feierabend J (1980) Capacity for RNA synthesis in 70S ribosome-deficient plastids of heat-bleached rye leaves. Planta 149:163–169

    Google Scholar 

  • Cahoon AB, Harris FM, Stern DB (2004) Analysis of developing maize plastids reveals two mRNA stability classes correlating with RNA polymerase type. EMBO Rep 5:801–806

    PubMed  CAS  Google Scholar 

  • Caoile AGFS, Stern DB (1997) A conserved core element is functionally important for maize mitochondrial promoter activity in vitro. Nucleic Acids Res 25:4055–4060

    PubMed  CAS  Google Scholar 

  • Carlberg I, Hansson M, Kieselbach T, Schroder WP, Andersson B, Vener AV (2003) A novel plant protein undergoing light-induced phosphorylation and release from the photosynthetic thylakoid membranes. Proc Natl Acad Sci USA 100:757–762

    PubMed  CAS  Google Scholar 

  • Carter ML, Smith AC, Kobayashi H, Purton S, Herrin DL (2004) Structure, circadian regulation and bioinformatic analysis of the unique sigma factor gene in Chlamydomonas reinhardtii. Photosynth Res 82:339–349

    PubMed  CAS  Google Scholar 

  • Cashel M, Gentry DM, Hernandez VJ, Vinella D (1996) The stringent response. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 1. ASM Press, Washington DC, pp 1458–1496

    Google Scholar 

  • Cermakian N, Ikeda TM, Cedergren R, Gray MW (1996) Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res 24:648–654

    PubMed  CAS  Google Scholar 

  • Chang C-C, Sheen J, Bligny M, Niwa Y, Lerbs-Mache S, Stern DB (1999) Functional analysis of two maize cDNAs encoding T7-like RNA polymerases. Plant Cell 11:911–926

    PubMed  CAS  Google Scholar 

  • Chen MC, Cheng MC, Chen SC (1993) Characterization of the promoter of rice plastid psaA-psaB-rps14 operon and the DNA-specific binding proteins. Plant Cell Physiol 34:577–584

    PubMed  CAS  Google Scholar 

  • Cheng MC, Wu SP, Chen LFO, Chen SCG (1997) Identification and purification of a spinach chloroplast DNA-binding protein that interacts specifically with the plastid psaA-psaB-rps14 promoter region. Planta 203:373–380

    PubMed  CAS  Google Scholar 

  • Chory J (2010) Light signal transduction: an infinite spectrum of possibilities. Plant J 61:982–991

    PubMed  CAS  Google Scholar 

  • Christopher DA, Hoffer PH (1998) DET1 represses a chloroplast blue light-responsive promoter in a developmental and tissue-specific manner in Arabidopsis thaliana. Plant J 14:1–11

    PubMed  CAS  Google Scholar 

  • Chun L, Kawakami A, Christopher DA (2001) Phytochrome A mediates blue light and UV-A-dependent chloroplast gene transcription in green leaves. Plant Physiol 125:1957–1966

    PubMed  CAS  Google Scholar 

  • Courtois F, Merendino L, Demarsy E, Mache R, Lerbs-Mache S (2007) Phage-type RNA polymerase RPOTmp transcribes the rrn operon from the PC promoter at early developmental stages in Arabidopsis. Plant Physiol 145:712–721

    PubMed  CAS  Google Scholar 

  • Däschner K, Couée I, Binder S (2001) The mitochondrial isovaleryl-coenzyme A dehydrogenase of Arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol 126:601–612

    PubMed  Google Scholar 

  • Dhingra A, Bies DH, Lehner KR, Folta KM (2006) Green light adjusts the plastid transcriptome during early photomorphogenic development. Plant Physiol 142:1256–1266

    PubMed  CAS  Google Scholar 

  • Dombrowski S, Hoffmann M, Guha C, Binder S (1999) Continuous primary sequence requirements in the 18-nucleotide promoter of dicot plant mitochondria. J Biol Chem 274:10094–10099

    PubMed  CAS  Google Scholar 

  • Edqvist J, Bergman P (2002) Nuclear identity specifies transcriptional initiation in plant mitochondria. Plant Mol Biol 49:59–68

    PubMed  CAS  Google Scholar 

  • Ellis RJ, Hartley MR (1971) Sites of synthesis of chloroplast proteins. Nature 233:193–196

    PubMed  CAS  Google Scholar 

  • Emanuel C, Weihe A, Graner A, Hess WR, Börner T (2004) Chloroplast development affects expression of phage-type RNA polymerases in barley leaves. Plant J 38:460–472

    PubMed  CAS  Google Scholar 

  • Emanuel C, von Groll U, Müller M, Börner T, Weihe A (2006) Development- and tissue-specific expression of the RpoT gene family of Arabidopsis encoding mitochondrial and plastid RNA polymerases. Planta 223:998–1009

    PubMed  CAS  Google Scholar 

  • Falk J, Schmidt A, Krupinska K (1993) Characterization of plastid DNA transcription in ribosome deficient plastids of heat-bleached barley leaves. J Plant Physiol 141:176–181

    CAS  Google Scholar 

  • Fey V, Wagner R, Brautigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmuller R, Pfannschmidt T (2005) Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana. J Biol Chem 280:5318–5328

    PubMed  CAS  Google Scholar 

  • Finnegan PM, Brown GG (1990) Transcriptional and post-transcriptional regulation of RNA levels in maize mitochondria. Plant Cell 2:71–83

    PubMed  CAS  Google Scholar 

  • Fisher RP, Lisowsky T, Parisi MA, Clayton DA (1992) DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem 267:3358–3367

    PubMed  CAS  Google Scholar 

  • Gagliardi D, Leaver CJ (1999) Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower. EMBO J 18:3757–3766

    PubMed  CAS  Google Scholar 

  • Geddy R, Mahé L, Brown GG (2005) Cell-specific regulation of a Brassica napus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter. Plant J 41:333–345

    PubMed  CAS  Google Scholar 

  • Giegé P, Hoffmann M, Binder S, Brennicke A (2000) RNA degradation buffers asymmetries of transcription in Arabidopsis mitochondria. EMBO Rep 1:164–170

    PubMed  Google Scholar 

  • Giegé P, Sweetlove LJ, Cognat V, Leaver CJ (2005) Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis. Plant Cell 17:1497–1512

    PubMed  Google Scholar 

  • Givens RM, Lin MH, Taylor DJ, Mechold U, Berry JO, Hernandez VJ (2004) Inducible expression, enzymatic activity, and origin of higher plant homologues of bacterial RelA/SpoT stress proteins in Nicotiana tabacum. J Biol Chem 279:7495–7504

    PubMed  CAS  Google Scholar 

  • Gray JC (2003) Chloroplast-to-nucleus signalling: a role for Mg-protoporphyrin. Trends Genet 19:526–529

    PubMed  CAS  Google Scholar 

  • Hajdukiewicz PTJ, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    PubMed  CAS  Google Scholar 

  • Han CD, Patrie W, Polacco M, Coe EH (1993) Abberations in plastid transcripts and deficiency of plastid DNA in striped and albino mutants in maize. Planta 191:552–563

    CAS  Google Scholar 

  • Hanaoka M, Kanamaru K, Fujiwara M, Takahashi H, Tanaka K (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 6:545–550

    PubMed  CAS  Google Scholar 

  • Hedtke B, Börner T, Weihe A (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277:809–811

    PubMed  CAS  Google Scholar 

  • Hedtke B, Wagner I, Börner T, Hess WR (1999a) Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels. Plant J 19:635–643

    PubMed  CAS  Google Scholar 

  • Hedtke B, Meixner M, Gillandt S, Richter E, Börner T, Weihe A (1999b) Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo. Plant J 17:557–561

    PubMed  CAS  Google Scholar 

  • Hedtke B, Börner T, Weihe A (2000) One RNA polymerase serving two genomes. EMBO Rep 1:435–440

    PubMed  CAS  Google Scholar 

  • Hedtke B, Legen J, Weihe A, Herrmann RG, Börner T (2002) Six active phage-type RNA polymerase genes in Nicotiana tabacum. Plant J 30:625–637

    PubMed  CAS  Google Scholar 

  • Hengeveld R, Fedonkin MA (2004) Causes and consequences of eukaryotization through mutualistic endosymbiosis and compartmentalization. Acta Biotheor 52:105–154

    PubMed  CAS  Google Scholar 

  • Hess WR, Börner T (1999) Organellar RNA polymerases of higher plants. Int Rev Cytol 190:1–59

    PubMed  CAS  Google Scholar 

  • Hess WR, Prombona A, Fieder B, Subramanian AR, Börner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12:563–571

    PubMed  CAS  Google Scholar 

  • Holec S, Lange H, Canaday J, Gagliardi D (2008) Coping with cryptic and defective transcripts in plant mitochondria. Biochim Biophys Acta 1779:566–573

    PubMed  CAS  Google Scholar 

  • Hricová A, Quesada V, Micol JL (2006) The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis. Plant Physiol 141:942–956

    PubMed  Google Scholar 

  • Ikeda T, Gray M (1999a) Characterization of a DNA-binding protein implicated in transcription in wheat mitochondria. Mol Cell Biol 19:8113–8122

    PubMed  CAS  Google Scholar 

  • Ikeda TM, Gray MW (1999b) Identification and characterization of T7/T3 bacteriophage-like RNA polymerase sequences in wheat. Plant Mol Biol 40:567–578

    PubMed  CAS  Google Scholar 

  • Imamura S, Asayama M (2009) Sigma factors for cyanobacterial transcription. Gene Regul Syst Biol 3:65–87

    CAS  Google Scholar 

  • Imamura S, Yoshihara S, Nakano S, Shiozaki N, Yamada A, Tanaka K, Takahashi H, Asayama M, Shirai M (2003) Purification, characterization, and gene expression of all sigma factors of RNA polymerase in a cyanobacterium. J Mol Biol 325:857–872

    PubMed  CAS  Google Scholar 

  • Iratni R, Baeza L, Andreeva A, Mache R, Lerbs-Mache S (1994) Regulation of rDNA transcription in chloroplasts: promoter exclusion by constitutive repression. Genes Dev 8:2928–2938

    PubMed  CAS  Google Scholar 

  • Iratni R, Diederich L, Harrak H, Bligny M, Lerbs-Mache S (1997) Organ-specific transcription of the rrn operon in spinach plastids. J Biol Chem 272:13676–13682

    PubMed  CAS  Google Scholar 

  • Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518

    PubMed  CAS  Google Scholar 

  • Jishage M, Kvint K, Shingler V, Nyström T (2002) Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev 16:1260–1270

    PubMed  CAS  Google Scholar 

  • Kabeya Y, Sato N (2005) Unique translation initiation at the second AUG codon determines mitochondrial localization of the phage-type RNA polymerases in the moss Physcomitrella patens. Plant Physiol 138:369–382

    PubMed  CAS  Google Scholar 

  • Kabeya Y, Kobayashi Y, Suzuki H, Itoh J, Sugita M (2007) Transcription of plastid genes is modulated by two nuclear-encoded alpha subunits of plastid RNA polymerase in the moss Physcomitrella patens. Plant J 52:730–741

    PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    PubMed  CAS  Google Scholar 

  • Kapoor S, Sugiura M (1999) Identification of two essential sequence elements in the nonconsensus Type II PatpB-290 plastid promoter by using plastid transcription extracts from cultured tobacco BY-2 cells. Plant Cell 11:1799–1810

    PubMed  CAS  Google Scholar 

  • Kapoor S, Suzuki JY, Sugiura M (1997) Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J 11:327–337

    PubMed  CAS  Google Scholar 

  • Karcher D, Köster D, Schadach A, Klevesath A, Bock R (2009) The Chlamydomonas chloroplast HLP protein is required for nucleoid organization and genome maintenance. Mol Plant 2:1223–1232

    PubMed  CAS  Google Scholar 

  • Kasai K, Usami S, Yamada T, Endo Y, Ochi K, Tozawa Y (2002) A RelA-SpoT homolog (Cr-RSH) identified in Chlamydomonas reinhardtii generates stringent factor in vivo and localizes to chloroplasts in vitro. Nucleic Acids Res 30:4985–4992

    PubMed  CAS  Google Scholar 

  • Kleine T, Voigt C, Leister D (2009) Plastid signalling to the nucleus: messengers still lost in the mists? Trends Genet 25:185–192

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Dokiya Y, Sugita M (2001) Dual targeting of phage-type RNA polymerase to both mitochondria and plastids is due to alternative translation initiation in single transcripts. Biochem Biophys Res Commun 289:1106–1113

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Dokiya Y, Kumazawa Y, Sugita M (2002) Non-AUG translation initiation of mRNA encoding plastid-targeted phage-type RNA polymerase in Nicotiana sylvestris. Biochem Biophys Res Commun 299:57–61

    PubMed  CAS  Google Scholar 

  • Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121

    PubMed  CAS  Google Scholar 

  • Krause K, Krupinska K (2000) Molecular and functional properties of highly purified transcriptionally active chromosomes from spinach chloroplasts. Physiol Plant 109:188–195

    CAS  Google Scholar 

  • Krause K, Maier RM, Kofer W, Krupinska K, Herrmann RG (2000) Disruption of plastid-encoded RNA polymerase genes in tobacco: expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome. Mol Gen Genet 263:1022–1030

    PubMed  CAS  Google Scholar 

  • Krause K, Berg S, Krupinska K (2003) Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and of the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta 216:815–823

    PubMed  CAS  Google Scholar 

  • Kühn K, Weihe A, Börner T (2005) Multiple promoters are a common feature of mitochondrial genes in Arabidopsis. Nucleic Acids Res 33:337–346

    PubMed  Google Scholar 

  • Kühn K, Bohne A-V, Liere K, Weihe A, Börner T (2007) Arabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes. Plant Cell 19:959–971

    PubMed  Google Scholar 

  • Kühn K, Richter U, Meyer E, Delannoy E, Falcon de Longevialle A, O’Toole N, Börner T, Millar A, Small I, Whelan J (2009) Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell 21:2762–2779

    PubMed  Google Scholar 

  • Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K (2004) Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol 45:1194–1201

    PubMed  CAS  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    PubMed  CAS  Google Scholar 

  • Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J 31:171–188

    PubMed  CAS  Google Scholar 

  • Leino M, Landgren M, Glimelius K (2005) Alloplasmic effects on mitochondrial transcriptional activity and RNA turnover result in accumulated transcripts of Arabidopsis ORFs in cytoplasmic male-sterile Brassica napus. Plant J 42:469–480

    PubMed  CAS  Google Scholar 

  • Lerbs-Mache S (2011) Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? Plant Mol Biol 76(3–5):235–249

    Google Scholar 

  • Lezhneva L, Meurer J (2004) The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. Plant J 38:740–753

    PubMed  CAS  Google Scholar 

  • Li XQ, Zhang M, Brown GG (1996) Cell-specific expression of mitochondrial transcripts in maize seedlings. Plant Cell 8:1961–1975

    PubMed  CAS  Google Scholar 

  • Liere K, Börner T (2007a) Transcription of plastid genes. In: Grasser KD (ed) Regulation of transcription in plants. Blackwell, Oxford, pp 184–224

    Google Scholar 

  • Liere K, Börner T (2007b) Transcription and transcriptional regulation in plastids. In: Bock R (ed) Topics in current genetics: cell and molecular biology of plastids, vol 19. Springer, Berlin/Heidelberg, pp 121–174

    Google Scholar 

  • Liere K, Maliga P (1999a) In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J 18:249–257

    PubMed  CAS  Google Scholar 

  • Liere K, Maliga P (1999b) Novel in vitro transcription assay indicates that the accD NEP promoter is contained in a 19 bp fragment. In: Argyroudi-Akoyunoglou JH, Senger H (eds) The chloroplast: from molecular biology to biotechnology. Kluwer, Amsterdam, pp 79–84

    Google Scholar 

  • Liere K, Maliga P (2001) Plastid RNA polymerases in higher plants. In: Andersson B, Aro E-M (eds) Regulation of photosynthesis. Kluwer, Netherlands, Dordrecht, pp 29–49

    Google Scholar 

  • Liere K, Kaden D, Maliga P, Börner T (2004) Overexpression of phage-type RNA polymerase RpoTp in tobacco demonstrates its role in chloroplast transcription by recognizing a distinct promoter type. Nucleic Acids Res 32:1159–1165

    PubMed  CAS  Google Scholar 

  • Liere K, Weihe A, Börner T (2011) The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J Plant Physiol 168:1345–1360

    PubMed  CAS  Google Scholar 

  • Link G (1996) Green life: control of chloroplast gene transcription. Bioessays 18:465–471

    CAS  Google Scholar 

  • Link G (2003) Redox regulation of chloroplast transcription. Antioxid Redox Signal 5:79–87

    PubMed  CAS  Google Scholar 

  • Loschelder H, Homann A, Ogrzewalla K, Link G (2004) Proteomics-based sequence analysis of plant gene expression – the chloroplast transcription apparatus. Phytochemistry 65:1785–1793

    PubMed  CAS  Google Scholar 

  • Lukens JH, Mathews DE, Durbin RD (1987) Effect of tagetitoxin on the levels of ribulose 1,5-bisphosphate carboxylase, ribosomes, and RNA in plastids of wheat leaves. Plant Physiol 84:808–813

    PubMed  CAS  Google Scholar 

  • Lupold DS, Caoile AGFS, Stern DB (1999a) Genomic context influences the activity of maize mitochondrial cox2 promoters. Proc Natl Acad Sci USA 96:11670–11675

    PubMed  CAS  Google Scholar 

  • Lupold DS, Caoile AG, Stern DB (1999b) The maize mitochondrial cox2 gene has five promoters in two genomic regions, including a complex promoter consisting of seven overlapping units. J Biol Chem 274:3897–3903

    PubMed  CAS  Google Scholar 

  • Lysenko EA (2006) Analysis of the evolution of the family of the Sig genes encoding plant sigma factors. Russ J Plant Physiol V53:605–614

    Google Scholar 

  • Lysenko EA (2007) Plant sigma factors and their role in plastid transcription. Plant Cell Rep 26:845–859

    PubMed  CAS  Google Scholar 

  • Lysenko EA, Kuznetsov VV (2005) Plastid RNA polymerases. Mol Biol V39:661–674

    Google Scholar 

  • Maier UG, Bozarth A, Funk HT, Zauner S, Rensing SA, Schmitz-Linneweber C, Börner T, Tillich M (2008) Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biology 6:36

    PubMed  Google Scholar 

  • Maliga P (1998) Two plastid polymerases of higher plants: an evolving story. Trends Plant Sci 3:4–6

    Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99

    PubMed  CAS  Google Scholar 

  • Matsunaga M, Jaehning JA (2004) Intrinsic promoter recognition by a “core” RNA polymerase. J Biol Chem 279:44239–44242

    PubMed  CAS  Google Scholar 

  • Mayfield SP, Yohn CB, Cohen A, Danon A (1995) Regulation of chloroplast gene expression. Annu Rev Plant Physiol Plant Mol Biol 46:147–166

    CAS  Google Scholar 

  • Minoda A, Nagasawa K, Hanaoka M, Horiuchi M, Takahashi H, Tanaka K (2005) Microarray profiling of plastid gene expression in a unicellular red alga, Cyanidioschyzon merolae. Plant Mol Biol 59:375–385

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Onda Y, Fujiwara E, Wada M, Toyoshima Y (2004) Two independent light signals cooperate in the activation of the plastid psbD blue light-responsive promoter in Arabidopsis. FEBS Lett 571:26–30

    PubMed  CAS  Google Scholar 

  • Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci U S A 105:15184–15189

    PubMed  CAS  Google Scholar 

  • Moller SG, Kim YS, Kunkel T, Chua NH (2003) PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell 15:1111–1119

    PubMed  CAS  Google Scholar 

  • Monéger F, Smart CJ, Leaver CJ (1994) Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J 13:8–17

    PubMed  Google Scholar 

  • Morikawa K, Shiina T, Murakami S, Toyoshima Y (2002) Novel nuclear-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana. FEBS Lett 514:300–304

    PubMed  CAS  Google Scholar 

  • Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci USA 105:15178–15183

    PubMed  CAS  Google Scholar 

  • Muise RC, Hauswirth WW (1995) Selective DNA amplification regulates transcript levels in plant mitochondria. Curr Genet 28:113–121

    PubMed  CAS  Google Scholar 

  • Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313

    PubMed  CAS  Google Scholar 

  • Mulligan RM, Lau GT, Walbot V (1988) Numerous transcription initiation sites exist for the maize mitochondrial genes for subunit 9 of the ATP synthase and subunit 3 of cytochrome oxidase. Proc Natl Acad Sci U S A 85:7998–8002

    PubMed  CAS  Google Scholar 

  • Mulligan RM, Leon P, Walbot V (1991) Transcription and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol 11:533–543

    PubMed  CAS  Google Scholar 

  • Nagashima A, Hanaoka M, Shikanai T, Fujiwara M, Kanamaru K, Takahashi H, Tanaka K (2004) The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana. Plant Cell Physiol 45:357–368

    PubMed  CAS  Google Scholar 

  • Nayak D, Guo Q, Sousa R (2009) A promoter recognition mechanism common to yeast mitochondrial and phage T7 RNA polymerases. J Biol Chem 284:13641–13647

    PubMed  CAS  Google Scholar 

  • Newton KJ, Winberg B, Yamato K, Lupold S, Stern DB (1995) Evidence for a novel mitochondrial promoter preceding the cox2 gene of perennial teosintes. EMBO J 14:585–593

    PubMed  CAS  Google Scholar 

  • Oelmüller R, Levitan I, Bergfeld R, Rajasekhar VK, Mohr H (1986) Expression of nuclear genes as affected by treatments acting on the plastids. Planta 168:482–492

    Google Scholar 

  • Okada S, Brennicke A (2006) Transcript levels in plant mitochondria show a tight homeostasis during day and night. Mol Genet Genomics 276:71–78

    PubMed  CAS  Google Scholar 

  • Onda Y, Yagi Y, Saito Y, Takenaka N, Toyoshima Y (2008) Light induction of Arabidopsis SIG1 and SIG5 transcripts in mature leaves: differential roles of cryptochrome 1 and cryptochrome 2 and dual function of SIG5 in the recognition of plastid promoters. Plant J 55:968–978

    PubMed  CAS  Google Scholar 

  • Paget MS, Helmann JD (2003) The sigma70 family of sigma factors. Genome Biol 4:203.201–203.206

    Google Scholar 

  • Parisi MA, Xu B, Clayton DA (1993) A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol Cell Biol 13:1951–1961

    PubMed  CAS  Google Scholar 

  • Pesaresi P, Hertle A, Pribil M, Kleine T, Wagner R, Strissel H, Ihnatowicz A, Bonardi V, Scharfenberg M, Schneider A, Pfannschmidt T, Leister D (2009) Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21:2402–2423

    PubMed  CAS  Google Scholar 

  • Pfalz J, Liere K, Kandlbinder A, Dietz K-J, Oelmüller R (2006) pTAC2, -6 and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T (2010) Plastidial retrograde signalling – a true “plastid factor” or just metabolite signatures? Trends Plant Sci 15:427–435

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Liere K (2005) Redox regulation and modification of proteins controlling chloroplast gene expression. Antioxid Redox Signal 7:607–618

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999a) Photosynthetic control of chloroplast gene expression. Nature 397:625–628

    CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, Tullberg A, Link G, Allen JF (1999b) Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48:271–276

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Ogrzewalla K, Baginsky S, Sickmann A, Meyer HE, Link G (2000) The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.): integration of a prokaryotic core into a larger complex with organelle-specific functions. Eur J Biochem 267:253–261

    PubMed  CAS  Google Scholar 

  • Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609

    PubMed  CAS  Google Scholar 

  • Preuten T, Cincu E, Fuchs J, Zoschke R, Liere K, Börner T (2010) Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J 64:948–959

    PubMed  CAS  Google Scholar 

  • Puthiyaveetil S, Allen JF (2008) A bacterial-type sensor kinase couples electron transport to gene expression in chloroplasts. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun, Proceedings of the 14th International Congress on Photosynthesis. Springer, Heidelberg, pp 1181–1186

    Google Scholar 

  • Rapp WD, Lupold DS, Mack S, Stern DB (1993) Architecture of the maize mitochondrial atp1 promoter as determined by linker-scanning and point mutagenesis. Mol Cell Biol 13:7232–7238

    PubMed  CAS  Google Scholar 

  • Richter U, Kiessling J, Hedtke B, Decker E, Reski R, Börner T, Weihe A (2002) Two RpoT genes of Physcomitrella patens encode phage-type RNA polymerases with dual targeting to mitochondria and plastids. Gene 290:95–105

    PubMed  CAS  Google Scholar 

  • Richter U, Kühn K, Okada S, Brennicke A, Weihe A, Börner T (2010) A mitochondrial rRNA dimethyladenosine methyltransferase in Arabidopsis. Plant J 61:558–569

    PubMed  CAS  Google Scholar 

  • Rodermel S (2001) Pathways of plastid-to-nucleus signaling. Trends Plant Sci 6:471–478

    PubMed  CAS  Google Scholar 

  • Sato N (2001) Was the evolution of plastid genetic machinery discontinuous? Trends Plant Sci 6:151–155

    PubMed  CAS  Google Scholar 

  • Sato N, Terasawa K, Miyajima K, Kabeya Y (2003) Organization, developmental dynamics, and evolution of plastid nucleoids. Int Rev Cytol 232:217–262

    PubMed  CAS  Google Scholar 

  • Sato M, Takahashi K, Ochiai Y, Hosaka T, Ochi K, Nabeta K (2009) Bacterial alarmone, guanosine 5′-diphosphate 3′-diphosphate (ppGpp), predominantly binds the β′ subunit of plastid-encoded plastid RNA polymerase in chloroplasts. Chembiochem 10:1227–1233

    PubMed  CAS  Google Scholar 

  • Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Groot Koerkamp MJ, Tabak HF (1988) Mitochondrial RNA polymerase of Saccharomyces cerevisiae: composition and mechanism of promoter recognition. EMBO J 7:3255–3262

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    PubMed  CAS  Google Scholar 

  • Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322:281–284

    PubMed  Google Scholar 

  • Schröter Y, Steiner S, Matthäi K, Pfannschmidt T (2010) Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 10:2191–2204

    PubMed  Google Scholar 

  • Schwacke R, Fischer K, Ketelsen B, Krupinska K, Krause K (2007) Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genomics 277:631–646

    PubMed  CAS  Google Scholar 

  • Schweer J (2010) Plant sigma factors come of age: flexible transcription factor network for regulated plastid gene expression. Endocytobiosis Cell Res 20:1–20

    Google Scholar 

  • Schweer J, Geimer S, Meurer J, Link G (2009) Arabidopsis mutants carrying chimeric sigma factor genes reveal regulatory determinants for plastid gene expression. Plant Cell Physiol 50:1382–1386

    PubMed  CAS  Google Scholar 

  • Schweer J, Türkeri H, Link B, Link G (2010a) AtSIG6, a plastid sigma factor from Arabidopsis, reveals functional impact of cpCK2 phosphorylation. Plant J 62:192–202

    PubMed  CAS  Google Scholar 

  • Schweer J, Türkeri H, Kolpack A, Link G (2010b) Role and regulation of plastid sigma factors and their functional interactors during chloroplast transcription – recent lessons from Arabidopsis thaliana. Eur J Cell Biol 89(12):940–946

    PubMed  CAS  Google Scholar 

  • Sellaro R, Crepy M, Trupkin SA, Karayekov E, Buchovsky AS, Rossi C, Casal JJ (2010) Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. Plant Physiol 154:401–409

    PubMed  CAS  Google Scholar 

  • Shadel GS, Clayton DA (1993) Mitochondrial transcription. J Biol Chem 268:16083–16086

    PubMed  CAS  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1–68

    PubMed  CAS  Google Scholar 

  • Shiina T, Ishizaki Y, Yagi Y, Nakahira Y (2009) Function and evolution of plastid sigma factors. Plant Biotechnol 26:57–66

    CAS  Google Scholar 

  • Siemenroth A, Wollgiehn R, Neumann D, Börner T (1981) Synthesis of ribosomal RNA in ribosome-deficient plastids of the mutant “albostrians” of Hordeum vulgare L. Planta 153:547–555

    Google Scholar 

  • Silhavy D, Maliga P (1998) Mapping of the promoters for the nucleus-encoded plastid RNA polymerase (NEP) in the iojap maize mutant. Curr Genet 33:340–344

    PubMed  CAS  Google Scholar 

  • Smart CJ, Moneger F, Leaver CJ (1994) Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell 6:811–825

    PubMed  CAS  Google Scholar 

  • Smith AC, Purton S (2002) The transcriptional apparatus of algal plastids. Eur J Pharmacol 37:301–311

    Google Scholar 

  • Sriraman P, Silhavy D, Maliga P (1998) The phage-type PclpP-53 plastid promoter comprises sequences downstream of the transcription initiation site. Nucleic Acids Res 26:4874–4879

    PubMed  CAS  Google Scholar 

  • Steiner S, Dietzel L, Schröter Y, Fey V, Wagner R, Pfannschmidt T (2009) The role of phosphorylation in redox regulation of photosynthesis genes psaA and psbA during photosynthetic acclimation of mustard. Mol Plant 2:416–429

    PubMed  CAS  Google Scholar 

  • Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31:5324–5331

    PubMed  CAS  Google Scholar 

  • Suzuki JY, Jimmy Ytterberg A, Beardslee TA, Allison LA, Wijk KJ, Maliga P (2004) Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. Plant J 40:164–172

    PubMed  CAS  Google Scholar 

  • Swiatecka-Hagenbruch M, Liere K, Börner T (2007) High diversity of plastidial promoters in Arabidopsis thaliana. Mol Genet Genomics 277:725–734

    PubMed  CAS  Google Scholar 

  • Swiatecka-Hagenbruch M, Emanuel C, Hedtke B, Liere K, Börner T (2008) Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase. Nucleic Acids Res 36:785–792

    PubMed  CAS  Google Scholar 

  • Takahashi K, Kasai K, Ochi K (2004) Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proc Natl Acad Sci USA 101:4320–4324

    PubMed  CAS  Google Scholar 

  • Thum KE, Kim M, Morishige DT, Eibl C, Koop H-U, Mullet JE (2001) Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco. Plant Mol Biol 47:353–366

    PubMed  CAS  Google Scholar 

  • Tokuhisa JG, Vijayan P, Feldmann KA, Browse JA (1998) Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase. Plant Cell 10:699–712

    PubMed  CAS  Google Scholar 

  • Topping J, Leaver C (1990) Mitochondrial gene expression during wheat leaf development. Planta 182:399–407

    CAS  Google Scholar 

  • Toulokhonov II, Shulgina I, Hernandez VJ (2001) Binding of the transcription effector ppGpp to Escherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the beta′-subunit. J Biol Chem 276:1220–1225

    PubMed  CAS  Google Scholar 

  • Tracy RL, Stern DB (1995) Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet 28:205–216

    PubMed  CAS  Google Scholar 

  • Trifa Y, Privat I, Gagnon J, Baeza L, Lerbs-Mache S (1998) The nuclear RPL4 gene encodes a chloroplast protein that co-purifies with the T7-like transcription complex as well as plastid ribosomes. J Biol Chem 273:3980–3985

    PubMed  CAS  Google Scholar 

  • Tsunoyama Y, Morikawa K, Shiina T, Toyoshima Y (2002) Blue light specific and differential expression of a plastid sigma factor, Sig5 in Arabidopsis thaliana. FEBS Lett 516:225–228

    PubMed  CAS  Google Scholar 

  • Tsunoyama Y, Ishizaki Y, Morikawa K, Kobori M, Nakahira Y, Takeba G, Toyoshima Y, Shiina T (2004) Blue light-induced transcription of plastid-encoded psbD gene is mediated by a nuclear-encoded transcription initiation factor, AtSig5. Proc Natl Acad Sci USA 101:3304–3309

    PubMed  CAS  Google Scholar 

  • van der Biezen EA, Sun J, Coleman MJ, Bibb MJ, Jones JD (2000) Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc Natl Acad Sci USA 97:3747–3752

    PubMed  Google Scholar 

  • Wagner R, Pfannschmidt T (2006) Eukaryotic transcription factors in plastids – bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene 381:62–70

    PubMed  CAS  Google Scholar 

  • Warmke HE, Lee SL (1978) Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): a suggested mechanism. Science 200:561–563

    PubMed  CAS  Google Scholar 

  • Weihe A (2004) The transcription of plant organelle genomes. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Kluwer, Dordrecht, pp 213–237

    Google Scholar 

  • Weihe A, Börner T (1999) Transcription and the architecture of promoters in chloroplasts. Trends Plant Sci 4:169–170

    PubMed  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992a) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Ems SC, Palmer JD (1992b) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317

    PubMed  CAS  Google Scholar 

  • Woloszynska M, Trojanowski D (2009) Counting mtDNA molecules in Phaseolus vulgaris: sublimons are constantly produced by recombination via short repeats and undergo rigorous selection during substoichiometric shifting. Plant Mol Biol 70:511–521

    PubMed  CAS  Google Scholar 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395

    PubMed  CAS  Google Scholar 

  • Xie G, Allison LA (2002) Sequences upstream of the YRTA core region are essential for transcription of the tobacco atpB NEP promoter in chloroplasts in vivo. Curr Genet 41:176–182

    PubMed  CAS  Google Scholar 

  • Yan B, Pring DR (1997) Transcriptional initiation sites in sorghum mitochondrial DNA indicate conserved and variable features. Curr Genet 32:287–295

    PubMed  CAS  Google Scholar 

  • Yin C, Richter U, Börner T, Weihe A (2009) Evolution of phage-type RNA polymerases in higher plants: characterization of the single phage-type RNA polymerase gene from Selaginella moellendorffii. J Mol Evol 68:528–538

    PubMed  CAS  Google Scholar 

  • Yin C, Richter U, Börner T, Weihe A (2010) Evolution of plant phage-type RNA polymerases: the genome of the basal angiosperm Nuphar advena encodes two mitochondrial and one plastid phage-type RNA polymerases. BMC Evol Biol 10:379

    PubMed  CAS  Google Scholar 

  • Zer H, Ohad I (2003) Light, redox state, thylakoid-protein phosphorylation and signaling gene expression. Trends Biochem Sci 28:467–470

    PubMed  CAS  Google Scholar 

  • Zoschke R, Liere K, Börner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722

    PubMed  CAS  Google Scholar 

  • Zubo YO, Yamburenko MV, Selivankina SY, Shakirova FM, Avalbaev AM, Kudryakova NV, Zubkova NK, Liere K, Kulaeva ON, Kusnetsov VV, Börner T (2008) Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol 148:1082–1093

    PubMed  CAS  Google Scholar 

  • Zubo YO, Yamburenko MV, Kusnetsov VV, Börner T (2011) Methyl jasmonate, gibberellic acid and auxin affect transcription and transcript accumulation of chloroplast genes. J Plant Physiol 168(12):1335–1344

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of the authors is supported by Deutsche Forschungsgemeinschaft (SFB 429). We are thankful to Kirsten Krause for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Börner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weihe, A., Liere, K., Börner, T. (2012). Transcription and Transcription Regulation in Chloroplasts and Mitochondria of Higher Plants. In: Bullerwell, C. (eds) Organelle Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22380-8_12

Download citation

Publish with us

Policies and ethics