Skip to main content

Large Scale Agent-Based Modeling of the Humoral and Cellular Immune Response

  • Conference paper
Artificial Immune Systems (ICARIS 2011)

Abstract

The Immune System is, together with Central Nervous System, one of the most important and complex unit of our organism. Despite great advances in recent years that shed light on its understanding and in the unraveling of key mechanisms behind its functions, there are still many areas of the Immune System that remain object of active research. The development of in-silico models, bridged with proper biological considerations, have recently improved the understanding of important complex systems [1,2]. In this paper, after introducing major role players and principal functions of the mammalian Immune System, we present two computational approaches to its modeling; i.e., two in-silico Immune Systems. (i) A large-scale model, with a complexity of representation of 106 − 108 cells (e.g., APC, T, B and Plasma cells) and molecules (e.g., immunocomplexes), is here presented, and its evolution in time is shown to be mimicking an important region of a real immune response. (ii) Additionally, a viral infection model, stochastic and light-weight, is here presented as well: its seamless design from biological considerations, its modularity and its fast simulation times are strength points when compared to (i). Finally we report, with the intent of moving towards the virtual lymph note, a cost-benefits comparison among Immune System models presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stracquadanio, G., Umeton, R., Papini, A., Liò, P., Nicosia, G.: Analysis and optimization of c3 photosynthetic carbon metabolism. In: Rigoutsos, I., Floudas, C.A. (eds.) Proceedings of BIBE 2010, 10th IEEE International Conference on Bioinformatics and Bioengineering, May 31 - June 3, pp. 44–51. IEEE Computer Society Press, USA (2010)

    Chapter  Google Scholar 

  2. Umeton, R., Stracquadanio, G., Sorathiya, A., Papini, A., Liò, P., Nicosia, G.: Design of robust metabolic pathways. In: DAC 2011 - Proceedings of the 48th Design Automation Conference, June 5-10, ACM, San Francisco (2011)

    Google Scholar 

  3. Perelson, A.S.: Immune network theory. Immunol. Rev. 110, 5–36 (1989)

    Article  Google Scholar 

  4. Perelson, A., Weisbuch, G.: Theoretical and experimental insights into immunology. Springer, Heidelberg (1992)

    Book  Google Scholar 

  5. Bersini, H., Varela, F.: Hints for adaptive problem solving Gleaned from Immune networks. Parallel Problem Solving from Nature, 343–354 (1991)

    Google Scholar 

  6. Stauffer, D., Pandey, R.: Immunologically motivated simulation of cellular automata. Computers in Physics 6(4), 404 (1992)

    Article  Google Scholar 

  7. Seiden, P., Celada, F.: A model for simulating cognate recognition and response in the immune system*. Journal of theoretical biology 158(3), 329–357 (1992)

    Article  Google Scholar 

  8. Farmer, J., Packard, N., Perelson, A.: The Immune System, Adaptation & Learning. Physica D 22, 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  9. Forrest, S., Javornik, B., Smith, R.E., Perelson, A.S.: Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary computation 1(3), 191–211 (1993)

    Article  Google Scholar 

  10. Kim, P.S., Levy, D., Lee, P.P.: Modeling and Simulation of the Immune System as a Self-Regulating Network. Methods in Enzymology, 79–109 (2009)

    Google Scholar 

  11. Castiglione, F., Mannella, G., Motta, S., Nicosia, G.: A network of cellular automata for the simulation of the immune system. International Journal of Modern Physics C (IJMPC) 10(4), 677–686 (1999)

    Article  Google Scholar 

  12. Rapin, N., Lund, O., Bernaschi, M., Castiglione, F.: Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One 5(4), 9862 (2010)

    Article  Google Scholar 

  13. Bailey, A.M., Thorne, B.C., Peirce, S.M.: Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng. 35(6), 916–936 (2007)

    Article  Google Scholar 

  14. Bogle, G., Dunbar, P.R.: Agent-based simulation of t-cell activation and proliferation within a lymph node. Immunol Cell Biol 88(2), 172–179 (2010)

    Article  Google Scholar 

  15. Bauer, A.L., Beauchemin, C., Perelson, A.S.: Agent-based modeling of host-pathogen systems: the successes and challenges. Information sciences 179(10), 1379–1389 (2009)

    Article  Google Scholar 

  16. An, G., Mi, Q., Dutta-Moscato, J., Vodovotz, Y.: Agent-based models in translational systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 1(2), 159–171 (2009)

    Google Scholar 

  17. Mitha, F., Lucas, T.A., Feng, F., Kepler, T.B., Chan, C.: The multiscale systems immunology project: software for cell-based immunological simulation. Source Code Biol. Med. 3, 6 (2008)

    Article  Google Scholar 

  18. Beyer, T., Meyer-Hermann, M.: Multiscale modeling of cell mechanics and tissue organization. IEEE Eng. Med. Biol. Mag. 28(2), 38–45 (2009)

    Article  Google Scholar 

  19. Nudelman, G., Weigert, M., Louzoun, Y.: In-silico cell surface modeling reveals mechanism for initial steps of b-cell receptor signal transduction. Mol. Immunol. 46(15), 3141–3150 (2009)

    Article  Google Scholar 

  20. Perrin, D., Ruskin, H.J., Crane, M.: Model refinement through high-performance computing: an agent-based hiv example. Immunome Res 6(1), 3 (2010)

    Article  Google Scholar 

  21. Janeway, C., Travers, P., Walport, M., Capra, J.: Immunobiology: The Immune System in Health and Disease (1996)

    Google Scholar 

  22. Eckmann, L., Kagnoff, M.F., Fierer, J.: Intestinal epithelial cells as watchdogs for the natural immune system. Trends Microbiol. 3(3), 118–120 (1995)

    Article  Google Scholar 

  23. Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: Stochastic stage-structured modeling of the adaptive immune system. In: Proc. IEEE Comput. Soc. Bioinform. Conf., vol. 2, pp. 124–131 (2003)

    Google Scholar 

  24. Chakraborty, A., Košmrlj, A.: Statistical Mechanical Concepts in Immunology. Annual Review of Physical Chemistry 61, 283–303 (2010)

    Article  Google Scholar 

  25. Priami, C.: Stochastic pi-calculus. Comput. J. 38(7), 578–589 (1995)

    Article  Google Scholar 

  26. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403 (1976)

    Article  MathSciNet  Google Scholar 

  27. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. Concurrent Models in Molecular Biology (August 2004)

    Google Scholar 

  28. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: Hiv-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271(5255), 1582–1586 (1996)

    Article  Google Scholar 

  29. Phillips, A., Cardelli, L., Castagna, G.: A graphical representation for biological processes in the stochastic pi-calculus. Transactions in Computational Systems Biology 4230, 123–152 (2006)

    MathSciNet  Google Scholar 

  30. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Perelson, A.S.: Modelling viral and immune system dynamics. Nature Reviews Immunology 2(1), 28–36 (2002)

    Article  Google Scholar 

  32. Isaacson, S.A., Peskin, C.S.: Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM Journal on Scientific Computing 28(1), 47–74 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cutello, V., Narzisi, G., Nicosia, G.: A multi-objective evolutionary approach to the protein structure prediction problem. J. R. Soc. Interface 3(6), 139–151 (2006)

    Article  Google Scholar 

  34. Stracquadanio, G., Nicosia, G.: Computational energy-based redesign of robust proteins. Computers and Chemical Engineering 35(3), 464–473 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stracquadanio, G. et al. (2011). Large Scale Agent-Based Modeling of the Humoral and Cellular Immune Response. In: Liò, P., Nicosia, G., Stibor, T. (eds) Artificial Immune Systems. ICARIS 2011. Lecture Notes in Computer Science, vol 6825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22371-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22371-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22370-9

  • Online ISBN: 978-3-642-22371-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics