Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

In mammals and some bacteria, small molecular weight (∼10kDa) selenoprotein W (SelW) includes a single selenocysteine (Sec) residue in the Cys-X-X-Sec redox motif of the N-terminal region. It is expressed in a broad range of organisms, from mammals to bacteria. It is ubiquitously distributed in many tissues, and especially highly expressed in the skeletal muscle, heart and brain. Although many bacterial and frog SelW-like proteins contain Cys instead of Sec, it is highly conserved in many species of primates, domestic animals, rodents, amphibians, fish and bacteria. SelW is down- or up-regulated in response to oxidative stress, which suggests a redox function. SelW has Cys-X-X-Sec or Cys-X-X-Cys, both of which function as catalytic sites of redox proteins, such as thioredoxin, and allows reversible binding of glutathione to the Cys-37 residue of its protein. Moreover, since cells that overexpress SelW are resistant to exogenous oxidative stress, it is suggested that SelW may participate in an antioxidant function. However, the exact physiological function and enzymatic activity of SelW are largely unknown. This chapter will review what is currently known about SelW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whanger PD (2000) Cell Mol Life Sci 57: 1846

    Article  PubMed  CAS  Google Scholar 

  2. Muth OH, Oldfield, JE, Remmert, LF, and Schubert, JR (1958) Science 128: 1090

    Article  PubMed  CAS  Google Scholar 

  3. Schubert JR, Muth OH, Oldfield JE, Remmert LF (1961) Fed Proc 20: 689

    PubMed  CAS  Google Scholar 

  4. Tripp MJ, Whanger PD, Schmitz JA (1993) J Trace Elem Electrolytes Health Dis 7: 75

    PubMed  CAS  Google Scholar 

  5. Xu GL, Wang SC, Gu BQ, Yang YX, Song HB, Xue WL, Liang WS, Zhang PY (1997) Biomed Environ Sci 10: 316

    PubMed  CAS  Google Scholar 

  6. Li GS, Wang F, Kang D, Li C (1985) Hum Pathol 16: 602

    Article  PubMed  CAS  Google Scholar 

  7. Vendeland SC, Beilstein MA, Yeh JY, Ream W, Whanger PD (1995) Proc Natl Acad Sci USA 92: 8749

    Article  PubMed  CAS  Google Scholar 

  8. Vendeland SC, Beilstein MA, Chen CL, Jensen ON, Barofsky E, Whanger PD (1993) J Biol Chem 268: 17103

    PubMed  CAS  Google Scholar 

  9. Gu QP, Beilstein MA, Barofsky E, Ream W, Whanger PD (1999) Arch Biochem Biophys 361: 25

    Article  PubMed  CAS  Google Scholar 

  10. Gu QP, Beilstein MA, Vendeland SC, Lugade A, Ream W, Whanger PD (1997) Gene 193: 187

    Article  PubMed  CAS  Google Scholar 

  11. Lu J, Holmgren A (2009) J Biol Chem 284: 723

    Article  PubMed  CAS  Google Scholar 

  12. Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, Ginalski K, Grishin NV, Hatfield DL, Gladyshev VN (2007) Biochemistry 46: 6871

    Article  PubMed  CAS  Google Scholar 

  13. Aachmann FL, Fomenko DE, Soragni A, Gladyshev VN, Dikiy A (2007) J Biol Chem 282: 37036

    Article  PubMed  CAS  Google Scholar 

  14. Yeh JY, Beilstein MA, Andrews JS, Whanger PD (1995) FASEB J 9: 392

    PubMed  CAS  Google Scholar 

  15. Bellingham J, Gregory-Evans K, Fox MF, Gregory-Evans CY (2003) Biochim Biophys Acta 1627: 140

    PubMed  CAS  Google Scholar 

  16. Smith JS, Tachibana I, Pohl U, Lee HK, Thanarajasingam U, Portier BP, Ueki K, Ramaswamy S, Billings SJ, Mohrenweiser HW, Louis DN, Jenkins RB (2000) Genomics 64: 44

    Article  PubMed  CAS  Google Scholar 

  17. Yang JG, Hill KE, Burk RF (1989) J Nutr 119: 1010

    PubMed  CAS  Google Scholar 

  18. Allan CB, Lacourciere GM, Stadtman TC (1999) Annu Rev Nutr 19: 1

    Article  PubMed  CAS  Google Scholar 

  19. Gu QP, Sun Y, Ream LW, Whanger PD (2000) Mol Cell Biochem 204: 49

    Article  PubMed  CAS  Google Scholar 

  20. Yeh JY, Gu QP, Beilstein MA, Forsberg NE, Whanger PD (1997) J Nutr 127: 394

    PubMed  CAS  Google Scholar 

  21. Yeh JY, Vendeland SC, Gu Q, Butler JA, Ou BR, Whanger PD (1997) J Nutr 127: 2165

    PubMed  CAS  Google Scholar 

  22. Gu QP, Ream W, Whanger PD (2002) Biometals 15: 411

    Article  PubMed  CAS  Google Scholar 

  23. Sun Y, Butler JA, Whanger PD (2001) J Nutr Biochem 12: 88

    Article  PubMed  CAS  Google Scholar 

  24. Jeong DW, Kim EH, Kim TS, Chung YW, Kim H, Kim IY (2004) Mol Cells 17: 156

    PubMed  CAS  Google Scholar 

  25. Loflin J, Lopez N, Whanger PD, Kioussi C (2006) J Inorg Biochem 100: 1679

    Article  PubMed  CAS  Google Scholar 

  26. Schweizer U, Brauer AU, Kohrle J, Nitsch R, Savaskan NE (2004) Brain Res Brain Res Rev 45: 164

    Article  PubMed  CAS  Google Scholar 

  27. Chariot P, Bignani O (2003) Muscle Nerve 27: 662

    Article  PubMed  CAS  Google Scholar 

  28. Schafer FQ, Buettner GR (2001) Free Radic Biol Med 30: 1191

    Article  PubMed  CAS  Google Scholar 

  29. Ghezzi P (2005) Biochem Soc Trans 33: 1378

    Article  PubMed  CAS  Google Scholar 

  30. Bauman AT, Malencik DA, Barofsky DF, Barofsky E, Anderson SR, Whanger PD (2004) Biochem Biophys Res Commun 313: 308

    Article  PubMed  CAS  Google Scholar 

  31. Jeong D, Kim TS, Chung YW, Lee BJ, Kim IY (2002) FEBS Lett 517: 225

    Article  PubMed  CAS  Google Scholar 

  32. Kim YJ, Chai YG, Ryu JC (2005) Biochem Biophys Res Commun 330: 1095

    Article  PubMed  CAS  Google Scholar 

  33. Amantana A, Vorachek WR, Butler JA, Costa ND, Whanger PD (2002) J Inorg Biochem 91: 356

    Article  PubMed  CAS  Google Scholar 

  34. Amantana A, Vorachek WR, Butler JA, Ream W, Whanger PD (2004) J Inorg Biochem 98: 1513

    Article  PubMed  CAS  Google Scholar 

  35. Hooven LA, Vorachek WR, Bauman AB, Butler JA, Ream LW, Whanger PD (2005) J Inorg Biochem 99: 2007

    Article  PubMed  CAS  Google Scholar 

  36. Esposito F, Ammendola R, Faraonio R, Russo T, Cimino F (2004) Neurochem Res 29: 617

    Article  PubMed  CAS  Google Scholar 

  37. Droge W (2002) Physiol Rev 82: 47

    PubMed  CAS  Google Scholar 

  38. Epp O, Ladenstein R, Wendel A (1983) Eur J Biochem 133: 51

    Article  PubMed  CAS  Google Scholar 

  39. Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) J Biol Chem 272: 15661

    Article  PubMed  CAS  Google Scholar 

  40. Sun Y, Gu QP, Whanger PD (2001) J Inorg Biochem 84: 151

    Article  PubMed  CAS  Google Scholar 

  41. Chung YW, Jeong D, Noh OJ, Park YH, Kang SI, Lee MG, Lee TH, Yim MB, Kim IY (2009) Mol Cells 27: 609

    Article  PubMed  CAS  Google Scholar 

  42. Holmgren A (1989) J Biol Chem 264: 13963

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, I.Y., Jeong, D. (2011). Selenoprotein W. In: Selenoproteins and Mimics. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22236-8_7

Download citation

Publish with us

Policies and ethics