Skip to main content

Petrological and Chemical Characterisation of High-Purity Quartz Deposits with Examples from Norway

  • Chapter
Quartz: Deposits, Mineralogy and Analytics

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Demand for high-purity quartz (HPQ) is strongly increasing worldwide owing to growing consumption and an increasing range of high-technology applications. This study includes: (1) a refined definition of HPQ (2) a discussion of the impurities controlling the chemical quality of HPQ products and (3) descriptions of selected HPQ deposits in Norway, both economic and potentially economic examples. The suggested definition of HPQ proposes concentration limits for the most important detrimental elements. The maximum content of each element should be: Al <30 μg g−1, Ti <10 μg g−1, Na <8 μg g−1, K <8 μg g−1, Li <5 μg g−1, Ca <5 μg g−1, Fe <3 μg g−1, P <2 μg g−1 and B <1 μg g−1 whereby the sum of all elements should not exceed 50 μg g−1.Impurities within quartz crystals (intracrystalline impurities) control the quality of HPQ products because they cannot be removed by conventional processing. These impurities include (i) lattice-bound trace elements, (ii) submicron inclusions <1 μm, and (iii) mineral and fluid micro inclusions (>1 μm). Present knowledge about intracrystalline impurities in natural quartz is described. The methods used here for identification and analysis of impurities are backscattered electron (BSE) and cathodoluminesence (SEM-CL) imaging and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The HPQ deposits discussed include the Melkfjell quartzite, several kyanite quartzites, the Nedre Øyvollen pegmatite and the Kvalvik, Nesodden and Svanvik hydrothermal quartz veins. The discussion focuses on the content of lattice-bound trace elements and the micro-inclusion inventory because these are the major parameters which determine the quality of HPQ products. Finally, processes leading to HPQ formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi T, Hokada T, Osanai Y, Toyoshima T, Baba S, Nakano N (2010) Titanium behavior in quartz during retrograde hydration: occurrence of rutile exsolution and implications for metamorphic processes in the Sør Rondane Mountains, East Antarctica. Polar Sci 3:222–234

    Google Scholar 

  • Åmli R, Lund B (1979) Diamantboringer Nedre Øyvollen kvartsforekomst, Drag i Tysfjord. NGU rapport 1771, 6 pp

    Google Scholar 

  • Andresen A, Tull JF (1986) Age and tectonic setting of the Tysfjord gneiss granite, Efjord, North Norway. Norsk Geologisk Tidsskrift 66:69–80

    Google Scholar 

  • Bambauer HU, Brunner GO, Laves F (1962) Wasserstoff-Gehalte in Quarzen aus Zerrklüften der Schweizer Alpen und die Deutung ihrer regionalen Abhängigkeit. Schweizerische Mineralogische und Petrographische Mitteilungen 42:221–236

    Google Scholar 

  • Bartovic S, Beane R (2007) Analysis of blue color in quartz grains from cushing formation, peaks island, maine. In: Abstracts GSM spring meeting 2007, GSM Newsletter 36/2:4

    Google Scholar 

  • Beurlen H, Müller A, Silva D, Da Silva MRR (2011) Petrogenetic significance of trace-element data analyzed with LA-ICP-MS in quartz from the Borborema pegmatite province, northeastern Brazil. Mineral Mag 75:2703–2719

    Google Scholar 

  • Bibikova EV, Ihlen PM, Marker M (2001) Age of the hydrothermal alteration leading to garnetite and kyanite pseudo-quartzite formation in the Khizovaara segment of the late Archean Keret Greenstone Belt, Russian Karelia. EUG XI Strasbourg, 8–12 April 2001. J Conf Abstr 6:277

    Google Scholar 

  • Björklund L (1989) Geology of the Akkajaure–Tysfjord–Lofoten traverse, N. Scandinavian Caledonides. Ph D thesis, Chalmers Tekniska Högskola och Göteborgs Universitet, publ. A 59, 214 pp

    Google Scholar 

  • Blankenburg H-J, Götze J, Schulz H (1994) Quarzrohstoffe. Deutscher Verlag für Grundstoffindustrie, Leipzig-Stuttgart, 296 pp

    Google Scholar 

  • Breiter K, Müller A (2009) Evolution of rare-metal granitic magmas documented by quartz chemistry. Eur J Mineral 21:335–346

    Google Scholar 

  • Brouard S, Breton J, Girardet G (1995) Small alkali metal clusters on (001) quartz surface: adsorption and diffusion. J Mol Struct (Theochem) 334:145–153

    Google Scholar 

  • Bruhn F, Bruckschen P, Meijer J, Stephan A, Richter DK, Veizer J (1996) Cathodoluminescence investigations and trace-element analysis of quartz by micro-PIXE: implications for diagenetic and provenance studies in sandstone. Can Mineral 34:1223–1232

    Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites. Can Mineral 43:2005–2026

    Google Scholar 

  • Cherniak DJ, Watson EB, Wark DA (2007) Ti diffusion in quartz. Chem Geol 236:65–74

    Google Scholar 

  • Dahl Ø (1980) Nasa og Stødi kyanittfelter-resultater fra diamantboring og geologiske undersøkelser sommeren. Aspro rapport 1115. Bergvesenrapport BV 3506, 21 pp

    Google Scholar 

  • Dennen WH (1966) Stoichiometric substitution in natural quartz. Geochimica et Cosmochimica Acta 30:1235–1241

    Google Scholar 

  • Flem B, Larsen RB, Grimstvedt A, Mansfeld J (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem Geol 182:237–247

    Google Scholar 

  • Flicstein J, Schieber M (1974) Microsegregation of impurities in hydrothermally-grown quartz crystals. J Cryst Growth 24(25):603–609

    Google Scholar 

  • Fossen H, Hurich CA (2005) The Hardangerfjord Shear Zone in SW Norway and the North Sea: a large-scale low-angle shear zone in the Caledonian crust. J Geol Soc Lond 162:675–687

    Google Scholar 

  • Frazier AS, Gobel VW (1982) Rutile as cause of blue color of quartz from llanite, Llano County, Texas. In: Abstracts with programs, Geological Society of America 14/3:111

    Google Scholar 

  • Frezzotti M-L (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos 55:273–299

    Google Scholar 

  • Frondel C (1962) The system of mineralogy: vol III. Silica minerals, Wiley, New York, 602 pp

    Google Scholar 

  • Fruth M, Blankenburg H-J (1992) Charakterisierung von authigenen idiomorphen Kohle- und Salinarquarzen durch Einschlussuntersuchungen. Neues Jahrbuch für Mineralogie Abhandlungen 165:53–64

    Google Scholar 

  • Geis HP (1964a) Befaring av kvartsforekomst Nesodden ved Løvfallstrand, Hardanger. NGU Rapport BA 7978, p 5

    Google Scholar 

  • Geis HP (1964b) Befaring av Nesodden kvartsforekomst, Hardanger. NGU Rapport BA 7981, p 4

    Google Scholar 

  • Geis HP (1965a) Undersøkelse av kvartsforekomsten Nesodden ved Løvfallstrand. NGU Rapport BA 7979, p 7

    Google Scholar 

  • Geis HP (1965b) Nesodden kvartsforekomst. NGU Rapport BA 7980, p 10

    Google Scholar 

  • GeoReM (2011) Geological and environmental reference materials. http://georem.mpch-mainz.gwdg.de. Accessed 2 Feb 2011

  • Gerler J (1990) Geochemische Untersuchungen an hydrothermalen, metamorphen, granitischen und pegmatitischen Quarzen und deren Flüssigkeitseinschlüssen. Ph.D. thesis, University Göttingen, 169 pp

    Google Scholar 

  • Gjelle S (1988) Geologisk kart over Norge, berggrunnskart Saltdal, M 1: 250.000. Geological Survey of Norway, Trondheim

    Google Scholar 

  • Götze J (2009) Chemistry, textures and physical properties of quartz geological interpretation and technical application. Mineral Mag 73:645–671

    Google Scholar 

  • Götze J (2012) Mineralogy, geochemistry and cathodoluminescence of authigenic quartz from different sedimentary rocks. (this volume)

    Google Scholar 

  • Götze J, Plötze M (1997) Investigation of trace-element distribution in detrital quartz by Electron Paramagnetic Resonance (EPR). Eur J Mineral 9:529–537

    Google Scholar 

  • Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review. Mineral Petrol 71:225–250

    Google Scholar 

  • Götze J, Plötze M, Graupner T, Hallbauer DK, Bray C (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillaryion analysis and gas chromatography. Geochimica et Cosmochimica Acta 68:3741–3759

    Google Scholar 

  • Gustavson M, Gjelle ST (1991) Berggrunnskart Mo i Rana 1: 250 000. Geological Survey of Norway, Trondheim

    Google Scholar 

  • Harben PW (2002) The industrial mineral handybook—a guide to markets, specifications and prices, 4th edn. Industrial Mineral Information. Worcester Park, p 412

    Google Scholar 

  • Haus R (2005) High demands on high purity—processing of high purity quartz and diatomite. Industrial Minerals October 2005, pp 62–67

    Google Scholar 

  • Hertweck B, Niedermayr G, Beran A (2003) OH zoning ion alpine quartz from Austria. European Geophysical Society (CD-Rom) Vol. 5, EGS-AGU-EUG Joint Assembly, 6th–11th April 2003, Nice, France, 08506

    Google Scholar 

  • Husdal T (2008) The minerals of the pegmatites within the Tysfjord granite, northern Norway. Bergverksmuseets Skrift 38:5–28

    Google Scholar 

  • Hyrsl J, Niedermayr G (2003) Magic world: inclusions in quartz—Geheimnisvolle Welt: Einschlüsse im Quarz. Bode Verlag GmbH, Haltern, 240 pp

    Google Scholar 

  • Ihlen PM (2000) Utilisation of sillimanite minerals, their geology, and potential occurrences in Norway—an overview. NGU Bulletin 436:113–128

    Google Scholar 

  • Ihlen PM, Müller A (2011) Forekomster av høyren kvarts langs Hardangerfjorden. NGU Rapport 2009.024, Trondheim, 69 pp

    Google Scholar 

  • Ingdal SE, Torske T, Kvale A (2001) Bergrunnskart Jondal 1315 4, M 1:50000. Geological Survey of Norway, Trondheim

    Google Scholar 

  • IOTA® (2011) IOTA® high purity quartz. http://www.iotaquartz.com/techiota4data.html Accessed 20 May 2011

  • Jacamon F, Larsen RB (2009) Trace element evolution of quartz in the charnockitic Kleivan granite, SW Norway: the Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos 107:281–191

    Google Scholar 

  • Jakobsen BM, Nielsen E (1977) Kyanit kvartsit projektet 1976–1977. Laboratorienrapport. Endogen Laboratorium. Geologisk Institut Aarhus Universitet, Aarhus, Denmark, 19 pp

    Google Scholar 

  • Jourdan A-L, Vennemann TW, Mullis J, Ramseyer K, Spiers CJ (2009) Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. Eur J Mineral 21:219–231

    Google Scholar 

  • Jung L (1992) High purity natural quartz. Part I: High purity natural quartz for industrial use. Part II: High purity natural quartz markets for suppliers and users. Quartz Technology, Liberty Corner , p 657

    Google Scholar 

  • Korneliussen A, Sawyer EW (1989) The geochemistry of lower proterozoic mafic to felsic igneous rocks, rombak window, North Norway. NGU Bull 415:7–21

    Google Scholar 

  • Larsen RB, Henderson I, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic quartz from South Norway. Contributions Mineral Petrol 147:615–628

    Google Scholar 

  • Larsson D (2001) Transition of granite to quartz-kyanite rock at Hålsjöberg, southern Sweden: consequence of acid leaching and later metamorphism. GFF 123:237–246

    Google Scholar 

  • Leeder O, Thomas R, Klemm W (1987) Einschlüsse in Mineralen. VEB Deutscher Grundstoffverlag, Leipzig, 180 pp

    Google Scholar 

  • Levchenkov OA, Levsky LK, Nordgulen Ø, Dobrzhinetskaya, Vetrin VR, Cobbing J, Nilsson LP, Sturt BA (1995) U–Pb zircon ages from Sørvaranger, Norway, and the western part of the Kola Peninsula, Russia. NGU Special Publication 7:29–47

    Google Scholar 

  • Luckscheiter B, Morteani G (1981) The H contents of quartz from Alpine veins from the penninic rocks of the central and western tauern window (Austria/Italy). Tschermaks Mineralogisch-Petrologische Mitteilungen 28:223–228

    Google Scholar 

  • Maschmeyer D, Lehmann G (1983) A trapped-hole center causing rose coloration of natural quartz. Zeitschrift für Kristallographie 163:181–196

    Google Scholar 

  • McLaren AC, Cook RF, Hyde ST, Tobin RC (1983) The mechanism of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Phys Chem Miner 9:79–94

    Google Scholar 

  • Meinhold G (2010) Rutile and its applications in the earth sciences. Earth Sci Rev 102:1–28

    Google Scholar 

  • Melezhik VA, Sturt BA (1994) A review of the general geology and history of the development of the early Proterozoic Polmalk-Pasvik-Pecheng Imandra/Varzuga-Ust’Ponoy Greenstone Belt. Earth Sci Rev 36:205–241

    Google Scholar 

  • Miyoshi N, Yamaguchi Y, Makino K (2005) Successive zoning of Al and H in hydrothermal vein quartz. Am Mineral 90:310–315

    Google Scholar 

  • Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: A reconnaissance study. Earth Planetary Sci Lett 202:709–724

    Google Scholar 

  • Müller A, Koch-Müller M (2009) Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral Mag 73:569–583

    Google Scholar 

  • Müller A, Seltmann R, Behr HJ (2000) Application of cathodoluminescence to magmatic quartz in a tin granite—case study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. Mineralium Deposita 35:169–189

    Google Scholar 

  • Müller A, Kronz A, Breiter K (2002a) Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesi Granite System (Krušne Hory, Czech Republic). Bull Czech Geol Surv 77:135–145

    Google Scholar 

  • Müller A, Lennox P, Trzebski R (2002b) Cathodoluminescence and micro-structural evidence for crystallisation and deformation processes of granites in the Eastern Lachlan Fold Belt (SE Australia). Contributions Mineral Petrol 143:510–524)

    Google Scholar 

  • Müller A, Wiedenbeck M, van den Kerkhof AM, Kronz A, Simon K (2003a) Trace elements in quartz—a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur J Mineral 15:747–763

    Google Scholar 

  • Müller A, René M, Behr H-J, Kronz A (2003b) Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovsky′ Les Mts, Czech Republic). Mineral Petrol 79:167–191

    Google Scholar 

  • Müller A, Breiter K, Seltmann R, Pécskay Z (2005a) Quartz and feldspar zoning in the Eastern Erzgebirge pluton (Germany, Czech Republic): evidence of multiple magma mixing. Lithos 80:201–227

    Google Scholar 

  • Müller A, Wanvik JE, Kronz A (2005b) Norwegian kyanite quartzites—potential resources of high purity quartz? NGU Report 2005.039, Trondheim, Norway, 70 pp

    Google Scholar 

  • Müller A, Williamson BJ, Smith M (2005c) Origin of quartz cores in tourmaline from Roche Rock, SW England. Mineral Mag 69:381–401

    Google Scholar 

  • Müller A, Ihlen PM, Wanvik JE, Flem B (2007) High-purity quartz mineralisation in kyanite quartzites, Norway. Mineralium Deposita 42:523–535

    Google Scholar 

  • Müller A, Ihlen PM, Kronz A (2008a) Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway. Eur J Mineral 20:447–463

    Google Scholar 

  • Müller A, Wiedenbeck M, Flem B, Schiellerup H (2008b) Refinement of phosphorus determination in quartz by LA-ICP-MS through defining new reference material values. Geostand Geoanal Res 32(3):361–376

    Google Scholar 

  • Müller A, Behr H-J, van den Kerkhof AM, Kronz A, Koch-Müller M (2010a) The evolution of late-Hercynian granites and rhyolites documented by quartz—a review. Earth Environ Sci Trans Royal Soc Edinburgh 100:185–204

    Google Scholar 

  • Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin DJ, Stenina NG, Kronz A (2010b) Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineralium Deposita 45:707–727

    Google Scholar 

  • Neumann H (1952) Feltspat forekomster i Tysfjorddistriktet. NGU Bergarkivrapport nr. 5208

    Google Scholar 

  • Nordgulen Ø (1999) Geologisk kart over Norge, Berggrunnskart Hamar, M 1: 250.000. Geol Surv Norway, Trondheim

    Google Scholar 

  • Northrup CJ (1997) Timing structural assembly, metamorphism, and cooling of the Caledonian nappes in the Ofoten-Efjorden area, north Norway: Tectonic insights from U-Pb and 40Ar/39Ar geochronology. J Geol 105:565–582

    Google Scholar 

  • Norwegian Crystallites AS (2011) http://norcryst.no/. Accessed 21 Jan 2011

  • Parker RB (1962) Blue quartz from the Wind River Range, Wyoming. Am Mineral 47:1201–1202

    Google Scholar 

  • Passchier CW, Trouw RAJ (2006) Microtectonics. Springer, Heidelberg 366 pp

    Google Scholar 

  • Penniston-Dorland SC (2001) Illumination of vein quartz textures in a porphyry copper ore deposits using scanned cathodoluminescence: grasberg igneous complex, Irian Jaya, Indonesia. Am Mineral 86:652–666

    Google Scholar 

  • Pfenninger H (1961) Diffusion von Kationen und Abscheidung von Metallen in Quarz unter elektrischer Feldeinwirkung. PhD Thesis, University Zürich

    Google Scholar 

  • Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of -quartz. Am Mineral 75:791–800

    Google Scholar 

  • Richter DK (1971) Fazies- und Diagenesehinweise durch Einschlüsse in authigenen Quarzen. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 10:604–622

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Reviews in mineralogy, vol. 12. Mineralogical Society of America, Washington, 644 p

    Google Scholar 

  • Rusk BG, Lowers HA, Reed MH (2008) Trace elements in hydrothermal quartz: relationships to cathodoluminescence textures and insights into vein formation. Geology 36:547–550

    Google Scholar 

  • Sawyer E (1986) Metamorphic assemblages and conditions in the Rombak basement window. NGU Rapport 88.116, Trondheim, Norway, 11 pp

    Google Scholar 

  • Seifert W, Rhede D, Thomas R, Förster H-J, Lucassen F, Dulski P, Wirth R (2011) On the origin of igneous blue quartz: inferences from a multi-analytical study of submicron mineral inclusions. Mineral Mag 75:2519–2534

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie and Sons, Glasgow 239 pp

    Google Scholar 

  • Siebers FB (1986) InhomogeneVerteilung von Verunreinigungen in gezüchteten und natürlichen Quarzen als Funktion derWachstumsbedingungen und ihr Einfluß auf kristallphysikalische Eigenschaften. PhD Thesis, Ruhr-Universität Bochum, 133 pp

    Google Scholar 

  • Siedlecka A, Nordgulen Ø (1996) Geologisk kart over Norge, berggrunnskart Kirkenes, M 1:250 000. Geological Survey of Norway, Trondheim, Norway

    Google Scholar 

  • Sigmond EMO (1998) Geologisk kart over Norge; Berggrunnskart Odda–M 1:250.000. Geological Survey of Norway, Trondheim, Norway

    Google Scholar 

  • Simon K (2001) Does δD from fluid inclusion in quartz reflect the original hydrothermal fluid? Chem Geol 177:483–495

    Google Scholar 

  • Simpson DR (1977) Aluminum phosphate variants in feldspars. Am Mineral 62:351–355

    Google Scholar 

  • Solli A, Nordgulen Ø (2006) Bedrock map of Norway and the Caledonides in Sweden and Finland. Scale 1: 2 000 000. Geological Survey of Norway, Trondheim

    Google Scholar 

  • Stephens MB, Gustavson M, Ramberg IB, Zachrisson E (1985) The Caledonides of central north Scandinavia—a tectonostratigraphic overview. In: Gee DG, Sturt BA (eds) The Caledonide Orogen—Scandinavia and Related Areas. Wiley, New York, pp 135–162

    Google Scholar 

  • Thomas S-M (2008) Wasserstoff in nominell wasserfreien Mineralen. PhD thesis. TU Berlin, D 83, Berlin, Germany, 134 pp

    Google Scholar 

  • Thomas R, Webster JD, Davidson P (2006) Understanding pegmatite formation: the melt and fluid inclusion approach. In: Webster JD (ed) Melt inclusions in plutonic rocks. Mineralogical Association of Canada, Short Course Series 36:189–210

    Google Scholar 

  • Tveten E, Lutro O, Thorsnes T (1998) Geologisk kart over Norge, berggrunnskart Ålesund, 1: 250.000. Geological Survey of Norway, Trondheim, Norway.

    Google Scholar 

  • Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47

    Google Scholar 

  • Van den Kerkhof AM, Müller A (1999) Fluid inclusion re-equilibration and trace element redistribution in quartz: observations by cathodoluminescence microscopy. ECROFI XV 1999 Abstracts and Program, Potsdam, Terra Nostra 99(6):161–162

    Google Scholar 

  • Van den Kerkhof AM, Kronz A, Simon K, Scherer T (2004) Fluid-controlled quartz recovery in granulite as revealed bycathodoluminescence and trace element analysis (Bamble sector, Norway). Contributions Mineral Petrol 146:637–652

    Google Scholar 

  • Wanvik JE (1988) Svanvik kvartsforekomst i Pasvik, Sør-Varanger kommune. NGU Rapport 87.081, Trondheim, Norway, 18 pp

    Google Scholar 

  • Wanvik JE (1989a) Statusrapport 1989 for undersøkelse av Svanvik kvartsforekomst. NGU Rapport 89.078, Trondheim, Norway, 17 pp

    Google Scholar 

  • Wanvik JE (1989b) Sluttrapport for undersøkelse av Svanvik kvartsforekomst. NGU Rapport 89.165, Trondheim, Norway, 9 pp

    Google Scholar 

  • Wanvik JE (1998) Kyanite investigations in Tverrådalen, Surnadal. NGU Rapport 98.080, Trondheim, Norway, 24 pp

    Google Scholar 

  • Wanvik JE (2001) Kvartsressurser i Nordland. NGU Rapport 2001.020, Trondheim, Norway, 103 pp

    Google Scholar 

  • Wanvik JE (2009) Melkfjell kvartsittforekomst–feltundersøkelser høsten 2008. NGU Rapport 2009.025, Trondheim, Norway, 51 pp

    Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contributions Mineral Petrol 152:743–754

    Google Scholar 

  • Watt GR, Wright P, Galloway S, McLean C (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochimica et Cosmochimica Acta 61:4337–4348

    Google Scholar 

  • Webster JD (ed) (2006) Melt inclusions in plutonic rocks. Mineralogical Association of Canada, Short Course Series 36, Montreal, Canada, 237 pp

    Google Scholar 

  • Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10:149–165

    Google Scholar 

  • Weil JA (1993) A review of the EPR spectroscopy of the point defects in a-quartz: The decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and Chemistry of SiO2 and the Si-SiO2 interface 2. Plenum Press, New York, pp 131–144

    Google Scholar 

  • Zolensky ME, Sylvester PJ, Paces JB (1988) Origin and significance of blue coloration in quartz from Llano rhyolite (llanite), north-central Llano County, Texas. Am Mineral 73:313–332

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Geological Survey of Norway (NGU). We greatly appreciate the language improvement of R. Boyd. We are grateful to the management of the Norwegian Crystallites AS who allowed the publication of data related to the Nedre Øyvollen and Svanvik quartz deposits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, A., Wanvik, J.E., Ihlen, P.M. (2012). Petrological and Chemical Characterisation of High-Purity Quartz Deposits with Examples from Norway. In: Götze, J., Möckel, R. (eds) Quartz: Deposits, Mineralogy and Analytics. Springer Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22161-3_4

Download citation

Publish with us

Policies and ethics