Skip to main content

Heavy Metal Toxicity: Oxidative Stress Parameters and DNA Repair

  • Chapter
  • First Online:
Metal Toxicity in Plants: Perception, Signaling and Remediation

Abstract

Plant growth and productivity are adversely affected by frequent exposure to various abiotic and biotic stress factors, such as heavy metals. Heavy metals are elements with a relatively high density and are toxic or poisonous. Different molecular mechanisms for heavy metal toxicity have been described, and, among these, the production of reactive oxygen species (ROS) deserves special attention. ROS are highly reactive atoms or molecules naturally produced in plants and predominantly formed in the electron transport chain of cellular respiration (chloroplasts) and in photoreactivation. Oxidative attack on DNA generates both altered bases and damaged sugar residues that undergo fragmentation and lead to strand breaks. DNA damage caused by exposure to ROS is one of the primary causes of DNA decay in most organisms. The irreversible DNA damage can interfere with plant development and affect crop productivity. To protect the cells, a complex network of proteins is activated for damage control and repair that includes both antioxidant enzymes removing ROS and DNA repair proteins. The DNA repair response includes different pathways, such as mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER), nonhomologous end joining (NHEJ), and homologous recombination (HR). Recent advances in the study of DNA repair in higher plants show that they use similar mechanisms to those present in other eukaryotes to remove and/or tolerate oxidized bases and other oxidative DNA lesions. The aim of this chapter is to review the latest data regarding the induction of oxidative stress by heavy metals in higher plants, introducing some basic concepts and seeking a relationship with DNA damage repair mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag:

Silver

AP:

Site apurinic and/or apyrimidinic site

APX:

Ascorbate peroxidase

As:

Arsenic

BER:

Base excision repair

CAT:

Catalase

Cd:

Cadmium

Co:

Cobalt

Cr:

Chromium

Cu:

Copper

Cu/Zn-SOD:

Cooper/zinc superoxide dismutase

Cys:

Cysteine

DMAV :

Dimethylarsinic acid

DMDSe:

Dimethyl diselenide

DMSe:

Dimethyl selenide

DSB:

Double strand breaks

Fe:

Iron

Fe-SOD:

Iron superoxide dismutase

gEC:

γ-Glutamylcystein

gECS:

γ-Glutamylcystein synthetase

GGR:

Global genome repair

GPX:

Glutathione peroxidase

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

Hg:

Mercury

HR:

Homologous recombination

LMWT:

Low-molecular-weight thiols

MMR:

Mismatch repair

Mn:

Manganese

Mn-SOD:

Manganese superoxide dismutase

Mo:

Molybdenum

NER:

Nucleotide excision repair

NHEJ:

Nonhomologous end joining

Ni:

Nickel

O •−2 :

Superoxide radicals

OH :

Hydroxyl radicals

Pb:

Lead

PC:

Phytochelatins

RAPD:

Random amplification of polymorphic DNA

SCE:

Sister chromatid exchanges

SOD:

Superoxide dismutase

TCR:

Transcription-coupled repair

Zn:

Zinc

References

  • Akbulut M, Cakir S (2010) The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48(2–3):160–166

    Article  PubMed  CAS  Google Scholar 

  • Al Rmalli SW, Haris PI, Harrington CF, Ayub M (2005) A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Sci Total Environ 337:23–30

    Article  PubMed  CAS  Google Scholar 

  • Ali W, Isayenkov SV, Zhao FJ, Maathuis FJ (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339

    Article  PubMed  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements–a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Balen B, Tkalec M, Sikić S, Tolić S, Cvjetko P, Pavlica M, Vidaković-Cifrek Z (2011) Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology. doi:10.1007/s10646-011-0633-1

  • Balestrazzi A, Confalonieri M, Macovei A, Donà M, Carbonera D (2011) Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity. Plant Cell Rep 30:287–295

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos G, LeDuc DL, Pilon-Smits EA, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine ethyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bowell RJ, Parshley J (2001) Arsenic cycling in the mining environment. Characterization of waste, chemistry, and treatment and disposal, proceedings and summary report on U.S. EPA workshop on managing arsenic risks to the environment, Denver, CO, USA, May 1–3 2001

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Jones RL (ed) Biochemistry and molecular biology of plants. American Society of Plant Physilogysts Press, New York

    Google Scholar 

  • Carvezan A (2008) Caracterização funcional dos gêneros de ascorbato peroxidase de arroz (Oryza sativa L.) nas interações entre estresse oxidativo e estresses abióticos. Dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

    Google Scholar 

  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium in due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Collin-Hansen C, Andersen RA, Steinnes E (2005) Damage to DNA and lipids in Boletus edulis exposed to heavy metals. Mycol Res 109(Pt 12):1386–1396

    Article  PubMed  CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (1999) The chemical behaviour of heavy metals plays a prominent role in the induction of oxidative stress. Free Radic Res 31:S39–S43

    Article  PubMed  CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phototoxicity: a comparison. J Plant Physiol 189:869–876

    Article  Google Scholar 

  • Cvjetko P, Tolic S, Sikic S, Balen B, Tkalec M, Vidakovic-Cifrek Z, Pavlica M (2010) Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (Lemna minor L.). Arh Hig Rada Toksikol 61:287–296

    PubMed  CAS  Google Scholar 

  • Daoudal-Cotterell S, Gallego ME, White CI (2002) The plant Rad50-Mre11 protein complex. FEBS Lett 516:164–166

    Article  PubMed  CAS  Google Scholar 

  • Deuner S, Alves JD, Fries DD, Zanandrea I, Lima AA, Henrique PC, Goulart PFP (2008) Peróxido de hidrogênio e ácido ascórbico influenciando a atividade de enzimas antioxidantes de mudas de cafeeiro. Rev Ceres 55:135–140

    CAS  Google Scholar 

  • Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115

    Article  PubMed  CAS  Google Scholar 

  • Djanaguiraman M, Prasad PV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Drahota P, Filippi M (2009) Secondary arsenic minerals in the environment: a review. Environ Int 35:1243–1255

    Article  PubMed  CAS  Google Scholar 

  • Drazkiewicz M, Tukendorf A, Baszynski T (2003) Age-dependent response of maize leaf segments to cadmium treatment: effect on chlorophyll fluorescence and phytochelatin accumulation. J Plant Physiol 160:247–254

    Article  PubMed  CAS  Google Scholar 

  • Dubest S, Gallego ME, White CI (2004) Roles of the AtErcc1 protein in recombination. Plant J 39:334–342

    Article  PubMed  CAS  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  PubMed  CAS  Google Scholar 

  • Fodor A, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 14:787–792

    Google Scholar 

  • Fornazier RF, Ferreira RR, Vitória AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol Plant 45:91–97

    Article  CAS  Google Scholar 

  • Gallego ME, Jeanneau M, Granier F, Bouchez D, Bechtold N, White CI (2001) Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity. Plant J 25:31–41

    Article  PubMed  CAS  Google Scholar 

  • García-Díaz M, Domínguez O, López-Fernández LA, de Ler LT, Saníger ML, Ruiz JF, Párraga M, García-Ortiz MJ, Kirchhoff T, del Mazo J, Bernad A, Blanco L (2000) DNA polymerase lambda (Pol lambda), a novel eukaryotic DNA polymerase with a potential role in meiosis. J Mol Biol 301:851–867

    Article  PubMed  Google Scholar 

  • Giaginis C, Gatzidou E, Theocharis S (2006) DNA repair systems as targets of cadmium toxicity. Toxicol Appl Pharmacol 213:282–290

    Article  PubMed  CAS  Google Scholar 

  • Giampaoli P (2010) Efeito de cobre e zinco no desenvolvimento in vitro de Aechmea blanchetiana (Baker) LB Smith. Dissertation, Instituto de Botânica da Secretaria de Estado do Meio Ambiente-São Paulo, Brazil

    Google Scholar 

  • Gichner T, Znidar I, Száková J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res 652:186–190

    PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  PubMed  CAS  Google Scholar 

  • Gomez RL, Galles C, Spampinato CP (2011) High-level production of MSH2 from Arabidopsis thaliana: a DNA mismatch repair system key subunit. Mol Biotechnol 47:120–129

    Article  PubMed  CAS  Google Scholar 

  • Gratão PL (2003) Análise da resposta antioxidante de células de Nicotiana tabacum cv BY-2 submetidas ao Cádmio. Dissertation, Universidade de São Paulo, Brazil

    Google Scholar 

  • Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Phys 7:53–64

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Han FX, Su Y, Monts DL, Waggoner CA, Plodinec MJ (2006) Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci Total Environ 368:753–768

    Article  PubMed  CAS  Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Se as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hartwig A, Schwerdtle T (2002) Interaction by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicol Lett 127:47–54

    Article  PubMed  CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138:307–315

    Article  PubMed  CAS  Google Scholar 

  • Hefner E, Preuss SB, Britt AB (2003) Arabidopsis mutants sensitive to gamma radiation includes the homologue of the human repair gene ERCC1. J Exp Bot 54:669–680

    Article  PubMed  CAS  Google Scholar 

  • Horwath M, Kramer W, Kunze R (2002) Structure and expression of the Zea mays mutS-homologs Mus1 and Mus2. Theor Appl Genet 105:423–430

    Article  PubMed  CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Sakaguchi K (2006) DNA repair in plants. Chem Rev 106:753–766

    Article  PubMed  CAS  Google Scholar 

  • Körpe DA, Aras S (2011) Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat Res 719:29–34

    PubMed  Google Scholar 

  • Kunz BA, Anderson HJ, Osmond MJ, Vonarx EJ (2005) Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana. Environ Mol Mutagen 45:115–127

    Article  PubMed  CAS  Google Scholar 

  • Kuzmick DM, Mitchelmore CL, Hopkins WA, Rowe CL (2007) Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius). Sci Total Environ 373:420–430

    Article  PubMed  CAS  Google Scholar 

  • Labra M, Grassi F, Imazio S, Di Fabio T, Citterio S, Sgorbati S, Agradi E (2004) Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere 54:1049–1058

    Article  PubMed  CAS  Google Scholar 

  • Lario LD, Ramirez-Parra E, Gutierrez C, Casati P, Spampinato CP (2011) Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response. J Exp Bot. doi:10.1093/jxb/err001

  • Lin A, Zhang X, Zhu YG, Zhao FJ (2008) Arsenate-induced toxicity: effects on antioxidative enzymes and DNA damage in Vicia faba. Environ Toxicol Chem 27:413–419

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Yang YS, Francis D, Rogers HJ, Li P, Zhang Q (2008) Cadmium stress alters gene expression of DNA mismatch repair related genes in Arabidopsis seedlings. Chemosphere 73:1138–1144

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zhou Q, Li P, Gao H, Han YP, Li XJ, Yang YS, Li Y (2009) DNA mismatch repair related gene expression as potential biomarkers to assess cadmium exposure in Arabidopsis seedlings. J Hazard Mater 167:1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Loredo J, Petit-Domínguez MD, Ordóñez A, Galán MP, Fernández-Martínez R, Alvarez R, Rucandio MI (2010) Surface water monitoring in the mercury mining district of Asturias (Spain). J Hazard Mater 176:323–332

    Article  PubMed  CAS  Google Scholar 

  • Ma TH, Xu ZD, Xu CG, Mcconnell H, Rabago EV, Arreola GA, Zhang H (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res 334:185–195

    PubMed  CAS  Google Scholar 

  • Marcato-Romain CE, Pinelli E, Pourrut B, Silvestre J, Guiresse M (2009) Assessment of the genotoxicity of Cu and Zn in raw and anaerobically digested slurry with the Vicia faba micronucleus test. Mutat Res 672:113–118

    PubMed  CAS  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int 16:162–175

    Article  PubMed  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Ozturk F, Duman F, Leblebici Z, Temizgul R (2010) Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ Exp Bot 69:167–174

    Article  CAS  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Panda SK, Chaudhury I, Khan MH (2003) Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol Plant 46:289–294

    Article  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  PubMed  CAS  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH Jr, USDA ARS (2006) Adverse of high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L). Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139:237–251

    Article  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    Article  PubMed  CAS  Google Scholar 

  • Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16:1968–1978

    Article  PubMed  CAS  Google Scholar 

  • Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M, Sinha AK (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82

    Article  PubMed  CAS  Google Scholar 

  • Resende MLV, Salgado SML, Chaves ZM (2003) Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatol Bras 28:123–130

    Article  Google Scholar 

  • Roldán-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681:169–179

    Article  PubMed  Google Scholar 

  • Sakai Y, Watanabe T, Wasaki J, Senoura T, Shinano T, Osaki M (2010) Influence of arsenic stress on synthesis and localization of lowmolecular-weight thiols in Pteris vittata. Environ Pollut 158:3663–3669

    Article  PubMed  CAS  Google Scholar 

  • Schröder P, Navarro-Aviñó J, Azaizeh H, Goldhirsh AG, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranalli A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007) Position paper: using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut Res Int 14:490–497

    Article  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Choudhury SR, Roy S, Sengupta DN (2011) Understanding DNA repair and recombination in higher plant genome: Information from genome-wide. Plant Signal Behav 6:120–122

    Article  PubMed  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smith E, Juhasz AL, Weber J (2009) Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environ Geochem Health 31:125–132

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Ahmad P, Panda BB, Tuteja R (2009) Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res 681:134–149

    Article  PubMed  CAS  Google Scholar 

  • West CE, Waterworth WM, Story GW, Sunderland PA, Jiang Q, Bray CM (2002) Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31:517–528

    Article  PubMed  CAS  Google Scholar 

  • Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230

    Article  PubMed  CAS  Google Scholar 

  • Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43:8488–8495

    Article  PubMed  CAS  Google Scholar 

  • Yokota Y, Shikazono N, Tanaka A, Hase Y, Funayama T, Wada S, Inoue M (2005) Comparative radiation tolerance based on the induction of DNA double-strand breaks in tobacco BY-2 cells and CHO-K1 cells irradiated with gamma rays. Radiat Res 163:520–525

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenifer Saffi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moura, D.J., Péres, V.F., Jacques, R.A., Saffi, J. (2012). Heavy Metal Toxicity: Oxidative Stress Parameters and DNA Repair. In: Gupta, D., Sandalio, L. (eds) Metal Toxicity in Plants: Perception, Signaling and Remediation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22081-4_9

Download citation

Publish with us

Policies and ethics