Skip to main content

Applications of Confocal Microscopy in the Study of Root Apparatus

  • Chapter
  • First Online:
Measuring Roots

Abstract

Confocal microscopy can be considered as one of the most important progress in optical microscopy within the last decades and has become a powerful investigation tool for molecular, cellular, and development biologist. In this chapter, the authors analyze the main uses of confocal microscopy and fluorescent dyes for studying many aspects of root physiology. The developments of confocal laser scanning microscopy and fluorescent probes that can be applied, in vivo, to plant root cells, have improved new possibilities for imaging cellular components and activities. Moreover, the opportunity to create transgenic plants and cells permits the visualization of fluorescently labeled components in cells, with minimum invasive manipulation. The combination of all this techniques provides more information for the comprehension of physiological and developmental processes in plant roots. Finally, the use of confocal laser microscopy in these types of studies has several advantages: (1) it is simple, rapid, and accurate; (2) it is nonhazardous; (3) a proper use of all the equipment is helpful to not obtain artifacted images but reliable ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn SJ, Sivaguru M, Chung GC, Rengel Z, Matsumoto H (2002) Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). J Environ Qual 53:1959–1966

    CAS  Google Scholar 

  • A (1983) Aluminium uptake by two winter wheat varieties of different tolerance to aluminium. Biochem Physiol Pflanz 178:11–20

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ et al. (eds) Photoinhibition (Topics in Photosynthesis) Vol. 9. pp 227–287

    Google Scholar 

  • Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher M, Zilles K (2005) Imaging of copper, zinc and other elements in thin section of human brain samples (hippocampus) by laser ablation inductive coupled plasma mass spectrometry. Anal Chem 77:3208–3216

    Article  PubMed  CAS  Google Scholar 

  • Beyer W, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  • Browne BA, McColl JC, Driscall CT (1990) Aluminium speciation using morin. I. Morin and its complexes with aluminium. Journ Env Qual 19:65–72

    CAS  Google Scholar 

  • Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJ (2001) Fluorescent sensors for Zn2+ based on a fluorescein platform: synthesis, properties and intracellular distribution. JACS 123:7831–7841

    Article  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  • Cançado GMA, Loguercio LL Martins, PR, Parentoni SN, Paiva E, Borém A, Lopes MA (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theor Appl Genet 99:747–754

    Article  Google Scholar 

  • Canny MJ (1995) Apoplastic water and solute movement: new roles for an old space. Annu Rev Plant Physiol Plant Mol Biol 46:215–236

    Article  CAS  Google Scholar 

  • Choi W, Baek D, Oh DH, Park J, Hong H, Kim WY, Bonhert HJ, Bressan RA, Park HC, Yun DJ (2011) NKS1, Na+-and K+-sensitive 1, regulates ion homeostasis in a SOS-independent pathway in Arabidopsis. Phytochemistry 72:330–336

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB (2009) Peroxisomes are required for in vivo nitric oxide (NO) accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151(4):2083–2094

    Article  PubMed  CAS  Google Scholar 

  • Denton J, Freemont AJ, Ball J (1984) Detection and distribution of aluminium in bone. Journ Chem Pathol 37:136–142

    CAS  Google Scholar 

  • Dodd IC, Tan LP, He J (2003) Do increases in xylem sap pH and/or ABA concentration mediate stomatal closure following nitrate deprivation? J Exp Bot 54:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Dunand C, Crèvecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Article  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc to Brassica species: implication for phytoremediation. J Environ Qual 26(3):776–781

    Article  CAS  Google Scholar 

  • Elsliger MA, Wachter RM, Hanson GT, Kallio K, Remington SJ (1999) Structural and spectral response of green fluorescent protein variants to changes in pH. Biochem 27:5296–5301

    Google Scholar 

  • Eticha D, Staß A, Horst WJ (2005) Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium? J Exp Bot 56:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao T, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–922

    PubMed  CAS  Google Scholar 

  • Felle HH, Hanstein S (2002) The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors. J Exp Bot 53:73–82

    Article  PubMed  CAS  Google Scholar 

  • Flohe L, Otting F (1984) Superoxide dismutase assays. Meth Enzymol 105:93–104

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell C, Mylona P, Miledema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen species in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection. Plant Cell 17:3489–3499

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Gunning BES (1998) Confocal fluorescence microscopy of plant cells. Protoplasma 201:121–157

    Article  Google Scholar 

  • Hickey PC, Swift SR, Roca MG, Read ND (2004) Live-cell Imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Meth Microbiol 34:63–87

    Article  Google Scholar 

  • Hu X, Neill SJ, Tang Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  PubMed  CAS  Google Scholar 

  • Irving HR, Gerhing CA, Parish RW (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. PNAS 89:1790–1794

    Article  PubMed  CAS  Google Scholar 

  • Jia WS, Davies WJ (2007) Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol 143:68–77

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Kochian LV (1997) Aluminium interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in citotoxicity. Febs Lett 400:51–57

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278

    Article  PubMed  CAS  Google Scholar 

  • Kampfenkel K, Van Montagu M, Inze D (1995) Effect of iron excess on Nicotiana plumbaginifolia plants. Implications to oxidative stress. Plant Physiol 107:725–735

    PubMed  CAS  Google Scholar 

  • Kataoka T, Nakanishi T (2001) Aluminum distribution in soybean root tip for a short time Al treatment. J Plant Physiol 158:731–736

    Article  CAS  Google Scholar 

  • Kataoka T, Iikura H, Nakanishi TM (1997) Al distribution and viability of plant root and cultured cells. Soil Sci Plant Nutr 43:1003–1007

    CAS  Google Scholar 

  • Kay AR, Neyton J, Paoletti P (2006) A startling role for synaptic zinc. Neuron 52:572–574

    Article  PubMed  CAS  Google Scholar 

  • Kesseler A, Brand MD (1994) Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis. Eur J Biochem 225:897–906

    Article  PubMed  CAS  Google Scholar 

  • Kwack JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  Google Scholar 

  • Kumar T, Majumdar A, Das P, Sarafis V, Ghose M (2008) Trypan blue as a fluorochrome for confocal laser scanning microscopy of arbuscular mycorrhizae in three mangroves. Biotech Histochem 83(3–4):153–159

    Article  PubMed  CAS  Google Scholar 

  • Läuchli A, James RA, Huang CX, McCully M, Munns R (2008) Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ 31:1565–1574

    Article  PubMed  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. PNAS 103(47):18008–18013

    Article  PubMed  CAS  Google Scholar 

  • Lipka V, Panstruga R (2005) Dynamic cellular responses in plant–microbe interactions. Curr Opin Plant Biol 8:625–631

    Article  PubMed  CAS  Google Scholar 

  • Llugany M, Poschenriedr C, Barceló J (1995) Monitoring of aluminium induced inhibition of root elongation in four maize cultivars differing in tolerance to Al and proton toxicity. Physiol Plant 93:265–271

    Article  CAS  Google Scholar 

  • Maly FE, Nakamura M, Gauchat JF, Urwyler A, Walker C, Dahinden CA, Cross AR, Jones OTG, De Weck AL (1989) Superoxide-dependent nitroblue tetrazolium reduction and expression of cytochrome b-245 components by human tonsillar lymphocytes and B cell lines. J Immunol 142:1260–1267

    PubMed  CAS  Google Scholar 

  • Mano S, Nakamori C, Hayashi M, Kato A, Kondo M, Nishimura M (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: dynamic morphology and actin-dependent movement. Plant Cell Physiol 43:331–341

    Article  PubMed  CAS  Google Scholar 

  • Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U (2010) Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. The Plant Cell 22:3177–3187

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminium toxicity and tolerance in higher plants. Int Rev Cytology 200:1–46

    Article  CAS  Google Scholar 

  • Moyer-Henry K, Silva I, Macgall J, Johannes E, Allen N, Goldforb B, Rufty T (2005) Accumulation and localization of aluminium in root tips of loblolly pine seedlings and the associated ectomycorrhiza Pisolithis tinctorius. Plant Cell Env 28:111–120

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Engin Geol 60:371–380

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  PubMed  CAS  Google Scholar 

  • Nagano T (2010) Development of fluorescent probes for bioimaging applications. Proc Jpn Acad Ser B 86:837–847

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B 1:3–26

    Article  CAS  Google Scholar 

  • Oh DH, Lee SY, Bressan RA, Yun DJ, Bonhert HJ (2010) Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Padua M, Aubert S, Casimiro A, Bligny R (1996) Arrest of mitochondrial biogenesis in copper-treated sycamore cells. FEBS Lett 398:248–252

    Article  PubMed  CAS  Google Scholar 

  • Padua M, Aubert S, Casimiro A, Bligny R, Millar AH, Day DA (1999) Induction of alternative oxidase by excess copper in sycamore cell suspensions. Plant Physiol Biochem 37:131–137

    Article  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Näsholm T, Schmidt S, Lonhienne TGA (2010) Turning the table: plants consume microbes as a source of nutrients. PLos ONE 5(7):11915

    Article  Google Scholar 

  • Prats E, Carver TLW, Mur LAJ (2008) Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis. Res Microbiol 159:476–480

    Article  PubMed  CAS  Google Scholar 

  • Read ND, Allan WTG, Knight H, Knight MR, Malho R, Russell A, Shacklock PS, Trewavas AJ (1992) Imaging and measurements of cytosolic free calcium in plant and fungal cells. J Microsc 166:57–86

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  Google Scholar 

  • Ros Barcelò A (1997) Lignification in plant cell walls. Intern Rev Cytol 176:87–132

    Article  Google Scholar 

  • Sarret G, Harada E, Choi YE, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as Zn-substituted calcium carbonate and other Zn-containing compounds. Plant Physiol 141:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Sattelmacher B, Mühling KH, Pennerviß K (1998) The apoplast – its significance for the nutrition of higher plants. Zeitschrift für Pfanzenernährung und Bodenkunde 161:485–498

    Article  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/K+ antiporter. PNAS 97:6896–6901

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/K+ antiporter SOS1 controls long-distance Na+ tran sport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen phosphorus and potassium deficiency. Plant Cell Physiol 46:1350–1357

    Article  PubMed  CAS  Google Scholar 

  • Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminium accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123:987–996

    Article  Google Scholar 

  • Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbet CS (2007) The use of zinc-fluorophore Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytol 174:39–45

    Article  PubMed  CAS  Google Scholar 

  • Smiri M, Chaoui A, El-Ferjani E (2009) Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J Plant Physiol 166:259–269

    Article  PubMed  CAS  Google Scholar 

  • Sobol M, Kordyum E (2009) Distribution of calcium ions in cells of the root distal elongation zone under clinorotation. Microgravity Sci Technol 21:179–185

    Article  CAS  Google Scholar 

  • Tang C, Kuo J, Longnecker NE, Thomson CJ, Robson AD (1993) High pH causes disintegration of the root surface in Lupinus angustifolius L. Ann Bot 71:201–207

    Article  Google Scholar 

  • Thompson R (2005) Studying zinc biology with fluorescence: ain’t we got fun? Curr Opin Chem Biol 9:526–532

    Article  PubMed  CAS  Google Scholar 

  • Tice K, Parker DR, DeMason DA (1992) Operationally defined apoplastic and symplastic aluminium fractions in root tips of aluminium-intoxicated wheat. Plant Physiol 100:309–318

    Article  PubMed  CAS  Google Scholar 

  • Vitorello VA, Haug A (1996) Short-term aluminium uptake Bt tobacco cells: growth dependence and evidence for internalization in a discrete peripheral region. Physiol Plant 97:536–544

    Article  CAS  Google Scholar 

  • Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Simcic J, Pelicon P, Budnar M, Povh B, Regvar M (2007) Localization and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlapsi praecox by micro-PIXE. Environ Pollut 147(1):50–59

    Article  PubMed  CAS  Google Scholar 

  • Webb AAR, McAinsh MR, Taylor JE, Hetherington AM (1996) Calcium ions as intracellular second messengers in higher plants. Adv Bot Res 22:45–96

    Article  CAS  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31:622–631

    Article  PubMed  CAS  Google Scholar 

  • Wilson J (1988) The cost of heavy metal tolerance: an example. Evolution 42:408–413

    Article  Google Scholar 

  • Woodroofe CC, Masahla R, Barnes KR, Frederickson CJ, Lippard SJ (2004) Membrane-permeable and -impermeable sensors of the Zinpyr family and their application to imaging of hippocampal zinc in vivo. Chem Biol 11:1659–1666

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Ye S, Jin Q, Zeng L, Peng Y, Yan D, Yang W, Yang D, He Z, Dong Y, Zhang X (2010) Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. J Genet Genomics 37:47–55

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Kuo J, Tang C (2001) Using Confocal Laser Scanning Microscopy to measure apoplastic pH change in roots of Lupinus angustifolius L. in response to high pH. Ann Bot 87:47–52

    Article  Google Scholar 

  • Zaichick V, Ovchjarenko N, Zaichick S (1999) In vivo energy dispersive X-ray fluorescence for measuring the content of essential and toxic trace elements in teeth. Appl Radiat Isot 50:283–293

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pollastri, S., Azzarello, E., Masi, E., Pandolfi, C., Mugnai, S., Mancuso, S. (2012). Applications of Confocal Microscopy in the Study of Root Apparatus. In: Mancuso, S. (eds) Measuring Roots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22067-8_6

Download citation

Publish with us

Policies and ethics