Skip to main content

A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods

  • Chapter
  • First Online:
Numerical Analysis of Multiscale Problems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 83))

Abstract

We give computational results to study the accuracy of several quasicontinuum methods for two benchmark problems – the stability of a Lomer dislocation pair under shear and the stability of a lattice to plastic slip under tensile loading. We find that our theoretical analysis of the accuracy near instabilities for one-dimensional model problems can successfully explain most of the computational results for these multi-dimensional benchmark problems. However, we also observe some clear discrepancies, which suggest the need for additional theoretical analysis and benchmark problems to more thoroughly understand the accuracy of quasicontinuum methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Ashcroft and D. Mermin. Solid State Physics. Brooks Cole, 1976.

    Google Scholar 

  2. S. Badia, M. Parks, P. Bochev, M. Gunzburger, and R. Lehoucq. On atomistic-to-continuum coupling by blending. Multiscale Model. Simul., 7(1):381–406, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  3. X. Blanc, C. Le Bris, and F. Legoll. Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. M2AN Math. Model. Numer. Anal., 39(4):797–826, 2005.

    Google Scholar 

  4. X. Blanc, C. Le Bris, and P.-L. Lions. From molecular models to continuum mechanics. Arch. Ration. Mech. Anal., 164(4):341–381, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bělík and M. Luskin. Sharp stability and optimal order error analysis of the quasi-nonlocal approximation of unconstrained linear and circular chains in 2-D. arXiv:1008.3716, 2010.

    Google Scholar 

  6. W. Curtin and R. Miller. Atomistic/continuum coupling in computational materials science. Modell. Simul. Mater. Sci. Eng., 11(3):R33–R68, 2003.

    Article  Google Scholar 

  7. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational geometry. Springer-Verlag, Berlin, third edition, 2008. Algorithms and applications.

    Google Scholar 

  8. M. Dobson and M. Luskin. Analysis of a force-based quasicontinuum approximation. Mathematical Modelling and Numerical Analysis, pages 113–139, 2008.

    Google Scholar 

  9. M. Dobson and M. Luskin. Iterative solution of the quasicontinuum equilibrium equations with continuation. Journal of Scientific Computing, 37:19–41, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Dobson and M. Luskin. An analysis of the effect of ghost force oscillation on the quasicontinuum error. Mathematical Modelling and Numerical Analysis, 43:591–604, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Dobson and M. Luskin. An optimal order error analysis of the one-dimensional quasicontinuum approximation. SIAM. J. Numer. Anal., 47:2455–2475, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Dobson, M. Luskin, and C. Ortner. Sharp stability estimates for force-based quasicontinuum methods. SIAM J. Multiscale Modeling & Simulation, 8:782–802, 2010. arXiv:0907.3861.

    Google Scholar 

  13. M. Dobson, M. Luskin, and C. Ortner. Stability, instability, and error of the force-based quasicontinuum approximation. Archive for Rational Mechanics and Analysis, 197:179–202, 2010. arXiv:0903.0610.

    Google Scholar 

  14. M. Dobson, M. Luskin, and C. Ortner. Accuracy of quasicontinuum approximations near instabilities. Journal of the Mechanics and Physics of Solids, 58, 1741-1757 (2010). arXiv:0905.2914v2.

    Google Scholar 

  15. M. Dobson, M. Luskin, and C. Ortner. Iterative methods for the force-based quasicontinuum approximation: Analysis of a 1D model problem. Computer Methods in Applied Mechanics and Engineering, 200, 2697–2709 (2011). arXiv:0910.2013v3.

    Google Scholar 

  16. W. E, J. Lu, and J. Yang. Uniform accuracy of the quasicontinuum method. Phys. Rev. B, 74(21):214115, 2004.

    Google Scholar 

  17. W. E and P. Ming. Cauchy-Born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal., 183(2):241–297, 2007.

    Google Scholar 

  18. G. Friesecke and F. Theil. Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci., 12(5):445–478, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Gunzburger and Y. Zhang. A quadrature-rule type approximation for the quasicontinuum method. Multiscale Modeling and Simulation, 8:571–590, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Hirth and J. Lothe. Theory of Dislocations. Krieger Publishing Company, 1992.

    Google Scholar 

  21. M. Iyer and V. Gavini. A field theoretical approach to the quasi-continuum method. J. Mech. Phys. Solids 59(8), 506–1535 (2011).

    Article  MathSciNet  Google Scholar 

  22. B. V. Koten and M. Luskin. Development and analysis of blended quasicontinuum approximations. arXiv:1008.2138v2, 2010.

    Google Scholar 

  23. X. H. Li and M. Luskin. A generalized quasinonlocal atomistic-to-continuum coupling method with finite-range interaction. IMA Journal of Numerical Analysis, (2011). doi: 10.1093/ imanum/drq049.

    Google Scholar 

  24. X. H. Li and M. Luskin. A generalized quasi-nonlocal atomistic-to-continuum coupling method with finite range interaction. International Journal for Multiscale Computational Engineering, to appear. arXiv:1007.2336.

    Google Scholar 

  25. P. Lin. Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp., 72(242):657–675, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Lin. Convergence analysis of a quasi-continuum approximation for a two-dimensional material without defects. SIAM J. Numer. Anal., 45(1):313–332, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Luskin and C. Ortner. An analysis of node-based cluster summation rules in the quasicontinuum method. SIAM. J. Numer. Anal., 47:3070–3086, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  28. C. Makridakis, C. Ortner, and E. Süli. Stress-based atomistic/continuum coupling: A new variant of the quasicontinuum approximation. preprint, 2010.

    Google Scholar 

  29. C. Makridakis, C. Ortner, and E. SÃijli. A priori error analysis of two force-based atomistic/continuum hybdrid models of a periodic chain. OxMOS Report No. 28.

    Google Scholar 

  30. R. Miller and E. Tadmor. The Quasicontinuum Method: Overview, Applications and Current Directions. Journal of Computer-Aided Materials Design, 9:203–239, 2003.

    Article  Google Scholar 

  31. R. Miller and E. Tadmor. Benchmarking multiscale methods. Modelling and Simulation in Materials Science and Engineering, 17:053001 (51pp), 2009.

    Google Scholar 

  32. P. Ming and J. Z. Yang. Analysis of a one-dimensional nonlocal quasi-continuum method. Multiscale Model. Simul., 7(4):1838–1875, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York, second edition, 2006.

    MATH  Google Scholar 

  34. C. Ortner. A priori and a posteriori analysis of the quasi-nonlocal quasicontinuum method in 1D, 2009. arXiv.org:0911.0671.

    Google Scholar 

  35. C. Ortner and E. Süli. Analysis of a quasicontinuum method in one dimension. M2AN Math. Model. Numer. Anal., 42(1):57–91, 2008.

    Google Scholar 

  36. S. Prudhomme, H. Ben Dhia, P. T. Bauman, N. Elkhodja, and J. T. Oden. Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method. Comput. Methods Appl. Mech. Engrg., 197(41-42):3399–3409, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  37. A. V. Shapeev. Consistent energy-based atomistic/continuum coupling for two-body potential: 1D and 2D case. preprint, 2010.

    Google Scholar 

  38. V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz. An adaptive finite element approach to atomic-scale mechanics–the quasicontinuum method. J. Mech. Phys. Solids, 47(3):611–642, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  39. L. E. Shilkrot, R. E. Miller, and W. A. Curtin. Multiscale plasticity modeling: Coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids, 52:755–787, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  40. T. Shimokawa, J. Mortensen, J. Schiotz, and K. Jacobsen. Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region. Phys. Rev. B, 69(21):214104, 2004.

    Google Scholar 

  41. E. B. Tadmor, M. Ortiz, and R. Phillips. Quasicontinuum Analysis of Defects in Solids. Philosophical Magazine A, 73(6):1529–1563, 1996.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under DMS-0757355, DMS-0811039, the PIRE Grant OISE-0967140, the Institute for Mathematics and Its Applications, and the University of Minnesota Supercomputing Institute. This work was also supported by the Department of Energy under Award Number DE-SC0002085. CO was supported by the EPSRC grant EP/H003096/1 “Analysis of Atomistic-to-Continuum Coupling Methods.”

We wish to thank Ellad Tadmor for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Luskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Koten, B., Li, X.H., Luskin, M., Ortner, C. (2012). A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds) Numerical Analysis of Multiscale Problems. Lecture Notes in Computational Science and Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22061-6_3

Download citation

Publish with us

Policies and ethics