Skip to main content

Quantum Commitments from Complexity Assumptions

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

We study worst-case complexity assumptions that imply quantum bit-commitment schemes. First we show that QSZK \(\not\subseteq\) QMA implies a computationally hiding and statistically binding auxiliary-input quantum commitment scheme. We then extend our result to show that the much weaker assumption QIP \(\not\subseteq\) QMA (which is weaker than PSPACE \(\not\subseteq\) PP) implies the existence of auxiliary-input commitment schemes with quantum advice. Finally, to strengthen the plausibility of the separation QSZK \(\not\subseteq\) QMA we find a quantum oracle relative to which honest-verifier QSZK is not contained in QCMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: Impossibility of succinct quantum proofs for collision-freeness. arxiv1101.0403 (2011)

    Google Scholar 

  2. Aaronson, S., Kuperberg, G.: Quantum versus classical proofs and advice. Theory of Computing 3(7), 129–157 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  4. Crépeau, C., Légaré, F., Salvail, L.: How to convert the flavor of a quantum bit commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 60–77. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Fuchs, C.A., van de Graaf, J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38(3) (1991)

    Google Scholar 

  7. Haitner, I., Nguyen, M.H., Ong, S.J., Reingold, O., Vadhan, S.: Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Helstrom, C.W.: Detection theory and quantum mechanics. Inform. Control 10(3) (1967)

    Google Scholar 

  10. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography. In: IEEE Symp. Found. Comput. Sci. (FOCS), pp. 230–235 (1989)

    Google Scholar 

  11. Jain, R., Ji, Z., Upadhyay, S., Watrous, J.: QIP = PSPACE. In: ACM STOC (2010)

    Google Scholar 

  12. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate Studies in Mathematics, vol. 47. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  14. Kitaev, A., Watrous, J.: Parallelization, amplification, and exponential time simulation of quantum interactive proof systems. In: ACM STOC, pp. 608–617 (2000)

    Google Scholar 

  15. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410 (1997)

    Article  Google Scholar 

  16. Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. Comput. Complex. 14(2) (2005)

    Google Scholar 

  17. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414 (1997)

    Article  Google Scholar 

  18. Naor, M.: Bit commitment using pseudorandomness. J. of Cryptology 4(2), 151–158 (1991)

    Article  MATH  Google Scholar 

  19. Nayak, A., Shor, P.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67(1), 012304 (2003)

    Article  Google Scholar 

  20. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-knowledge. In: 2nd Israel Symposium on Theory and Computing Systems, pp. 3–17 (1993)

    Google Scholar 

  21. Rosgen, B., Watrous, J.: On the hardness of distinguishing mixed-state quantum computations. In: Conf. Comput. Compl. (CCC), pp. 344–354 (2005)

    Google Scholar 

  22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Spekkens, R.W., Rudolph, T.: Degrees of concealment and bindingness in quantum bit commitment protocols. Phys. Rev. A 65(1), 012310 (2001)

    Article  Google Scholar 

  24. Vadhan, S.: An unconditional study of computational zero knowledge. SIAM J. Comput. 36(4), 1160–1214 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Watrous, J.: Succinct quantum proofs for properties of finite groups. In: FOCS 2000 (2000)

    Google Scholar 

  26. Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In: FOCS 2002 (2002)

    Google Scholar 

  27. Watrous, J.: PSPACE has constant-round quantum interactive proof systems. Theor. Comput. Sci. 292(3), 575–588 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chailloux, A., Kerenidis, I., Rosgen, B. (2011). Quantum Commitments from Complexity Assumptions. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics