Skip to main content

Financial Point Processes

  • Chapter
  • First Online:
Econometrics of Financial High-Frequency Data
  • 3733 Accesses

Abstract

This chapter provides the methodological background for the specification and estimation of financial point processes. We give a brief introduction to the fundamental statistical concepts and the basic ways to model point processes. For ease of introduction, we restrict our attention to non-dynamic point processes. In Sect.4.1, we discuss the most important theoretical concepts in point process theory. Here, the focus lies on the idea of the intensity function as a major concept in the theory of point processes. In Sect.4.2, different ways to model point processes are discussed. Section 4.3 is concerned with the treatment of censoring mechanisms and time-varying covariates. Section 4.4 gives an outlook on different ways to dynamically extend basic point process models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Point processes can also evolve over space yielding the class of spatial point processes or cluster processes, see, e.g., Daley and Vere-Jones (2005).

  2. 2.

    A càdlàg (french: continue à droite, limitée à gauche) function is a function which is right-continuous with left-hand limits.

  3. 3.

    More general types of point processes not fulfilling this property are, e.g., spatial point processes or Neymann-Scott cluster processes. For more details, see, e.g., Daley and Vere-Jones (2005).

  4. 4.

    See, e.g., Kalbfleisch and Prentice (1980), Kiefer (1988) or Lancaster (1997).

  5. 5.

    See, e.g., Daley and Vere-Jones (2005), Theorem A3.4.III.

  6. 6.

    See, e.g., Karr (1991), p. 57.

  7. 7.

    See, e.g., Kalbfleisch and Prentice (1980), Cox and Oakes (1984) or the recent survey by Oakes (2001).

  8. 8.

    A well known example is the analysis of the length of unemployment spells which is studied by a wide range of theoretical and empirical papers, see e.g. Lancaster (1979), Nickell (1979), Heckmann and Singer (1984), Moffitt (1985), Honoré (1990), Meyer (1990), Han and Hausman (1990), Gritz (1993), McCall (1996) or van den Berg and van der Klaauw (2001) among many others.

  9. 9.

    For more details, see Kalbfleisch and Prentice (1980) or in the survey of Kiefer (1988).

  10. 10.

    In this case, an intercept term has to be included in 4.39 since ε i  ∗  has a nonzero mean.

  11. 11.

    Nevertheless, the efficiency of the estimator is affected by the chosen categorization.

  12. 12.

    See Kalbfleisch and Prentice (1980).

  13. 13.

    See, e.g., Horowitz and Neumann (1987, 1989), the survey by Neumann (1997), Gorgens and Horowitz (1999) or Orbe et al. (2002).

  14. 14.

    Such processes will be discussed in more details in Chap. 10.

  15. 15.

    However, note that we cannot identify whether more than one price movement occurred during the non-trading period.

References

  1. Bauwens L, Hautsch N (2009) Modelling Financial High Frequency Data Using Point Processes. In: Andersen TG, Davis RA, Kreiss J-P, Mikosch T (eds) Handbook of financial time series. Springer, Berlin, Heidelberg

    Google Scholar 

  2. Bowsher CG (2007) Modelling security markets in continuous time: intensity based, multivariate point process models. J Econom 141:876–912

    Article  Google Scholar 

  3. Brémaud P (1981) Point processes and queues, Martingale dynamics. Springer, New York

    Book  Google Scholar 

  4. Breslow N (1972) Contribution to the Discussion of the Paper by D. R. Cox. J R Stat Soc Series B 34:216–17

    Google Scholar 

  5. Breslow NE (1974) Covariance analysis of censored survival data. Biometrics 30:89–100

    Article  Google Scholar 

  6. Brock W, Dechert WD, Scheinkman J, LeBaron B (1996) A test for independence based on the correlation dimension. Econom Rev 15:197–235

    Article  Google Scholar 

  7. Brown TC, Nair MG (1988) A simple proof of the multivariate random time change theorem for point processes. J Appl Probab 25:210–214

    Article  Google Scholar 

  8. Cameron AC, Trivedi PK (1998) Regression analysis of count data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Cox DR (1972) Regression Models and Life Tables. J R Stat Soc Series B 34:187–220

    Google Scholar 

  10. Cox DR (1975) Partial likelihood. Biometrika 62:269

    Article  Google Scholar 

  11. Cox DR, Isham V (1980) Point processes. Chapman and Hall, London

    Google Scholar 

  12. Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, London

    Google Scholar 

  13. Cox DR, Snell EJ (1968) A general definition of residuals. J R Stat Soc Series B 30:248–265

    Google Scholar 

  14. Daley D, Vere-Jones D (2005) An introduction to the theory of point processes. Volume I: Elementary theory and methods. Springer, New York

    Google Scholar 

  15. Davis RA, Rydberg TH, Shephard N, Streett SB (2001) The CBin model for counts: testing for common features in the speed of trading, quote changes, limit and market order arrivals. Discussion paper, Nuffield College, Oxford

    Google Scholar 

  16. Efron B (1986) Double exponential families and their use in generalized linear regression. J Am Stat Assoc 81:709–721

    Article  Google Scholar 

  17. Engle RF (2000) The econometrics of ultra-high-frequency data. Econometrica 68(1):1–22

    Article  Google Scholar 

  18. Engle RF, Russell JR (1998) Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica 66:1127–1162

    Article  Google Scholar 

  19. Gorgens T, Horowitz JL (1999) Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable. J Econom 90:155–191

    Article  Google Scholar 

  20. Gritz RM (1993) The impact of training on the frequency and duration of employment. J Econom 57:21–51

    Article  Google Scholar 

  21. Han A, Hausman JA (1990) Flexible parametric estimation of duration and competing risk models. J Appl Econom 5:1–28

    Article  Google Scholar 

  22. Hawkes AG (1971) Spectra of some self-exciting and mutually exciting point processes. Biometrika 58:83–90

    Article  Google Scholar 

  23. Heckmann JJ, Singer B (1984) Econometrics duration analysis. J Econom 24:63–132

    Article  Google Scholar 

  24. Heinen A, Rengifo E (2007) Multivariate autoregressive modelling of time series count data using copulas. Empir Financ 14:564–583

    Article  Google Scholar 

  25. Honoré BE (1990) Simple estimation of duration models with unobserved heterogeneity. Econometrica 58:453–473

    Article  Google Scholar 

  26. Horowitz JL, Neumann GR (1987) Semiparametric estimation of employment duration models. Econometric Review 6(1):5–40

    Article  Google Scholar 

  27. Kalbfleisch JD, Prentice RL (1980) The statistical analysis of failure time data. Wiley, New York

    Google Scholar 

  28. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  29. Karr AF (1991) Point processes and their statistical inference. Dekker, New York

    Google Scholar 

  30. Kiefer NM (1988) Economic duration data and hazard functions. J Econ Lit 26:646–679

    Google Scholar 

  31. Lancaster T (1979) Econometric methods for the duration of unemployment. Econometrica 47(4):939–956

    Article  Google Scholar 

  32. Lancaster T (1997) The econometric analysis of transition data. Cambridge University Press

    Google Scholar 

  33. McCall BP (1996) Unemployment insurance rules, joblessness and part-time work. Econometrica 64(3):647–682

    Article  Google Scholar 

  34. Meyer PA (1971) Démonstration simplifiée d’un théorème Knight. In Lecture Notes in Mathematics vol. 191. Springer, pp. 191–195

    Google Scholar 

  35. Meyer BD (1990) Unemployment insurance and unemployment spells. Econometrica 58(4):757–782

    Article  Google Scholar 

  36. Moffitt R (1985) Unemployment insurance and the distribution of unemployment spells. J Econom 28:85–101

    Article  Google Scholar 

  37. Neumann G (1997) Search models and duration data. In: Pesaran MH (ed) Handbook of Applied Econometrics, chap. 7. Basil Blackwell, Oxford, pp 300–351

    Google Scholar 

  38. Nickell S (1979) Estimating the probability of leaving unemployment. Econometrica 47(5):s 1249–1266

    Google Scholar 

  39. Oakes D (2001) Biometrika centenary: survival analysis. Biometrika 88:99–142

    Article  Google Scholar 

  40. Orbe J, Ferreira E, Nunez-Anton V (2002) Length of time spent in chapter 11 bankruptcy: a censored partial regression model. Appl Econ 34:1949–1957

    Article  Google Scholar 

  41. Ridder G (1990) The non-parametric identification of generalized accelerated failure-time models. Rev Econ Stud 57:167–182

    Article  Google Scholar 

  42. Snyder DL, Miller MI (1991) Random point processes and time and space, 2nd edn. Springer, New York,

    Book  Google Scholar 

  43. Sueyoshi GT (1995) A class of binary response models for grouped duration data. J Appl Econom 10:411–431

    Article  Google Scholar 

  44. van den Berg GJ, B. van der Klaauw (2001) Combining micro and macro unemployment duration data. J Econom 102:271–309

    Article  Google Scholar 

  45. Yashin A, Arjas E (1988) A note on random intensities and conditional survival functions. J Appl Probab 25:630–635

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Hautsch .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hautsch, N. (2012). Financial Point Processes. In: Econometrics of Financial High-Frequency Data. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21925-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21925-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21924-5

  • Online ISBN: 978-3-642-21925-2

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics