Skip to main content

Applying Causality Principles to the Axiomatization of Probabilistic Cellular Automata

  • Conference paper
Models of Computation in Context (CiE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6735))

Included in the following conference series:

Abstract

Cellular automata (CAs) consist of an bi-infinite array of identical cells, each of which may take one of a finite number of possible states. The entire array evolves in discrete time steps by iterating a global evolution G. Further, this global evolution G is required to be shift-invariant (it acts the same everywhere) and causal (information cannot be transmitted faster than some fixed number of cells per time step). At least in the classical [7], reversible [11] and quantum cases [1], these two top-down axiomatic conditions are sufficient to entail more bottom-up, operational descriptions of G. We investigate whether the same is true in the probabilistic case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. In: QIP 2010 (long talk), ArXiv preprint: arXiv:0711.3975 (2010)

    Google Scholar 

  2. Beckman, D., Gottesman, D., Nielsen, M.A., Preskill, J.: Causal and localizable quantum operations. Phys. Rev. A 64, 052309 (2001)

    Google Scholar 

  3. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  4. Butterfield, J.: Stochastic Einstein locality revisited. The British Journal for the Philosophy of Science 58(4), 805 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coecke, B., Lal, R.: Time-asymmetry and causal structure. Arxiv preprint arXiv:1010.4572 (2010)

    Google Scholar 

  6. Craig, D., Dowker, F., Henson, J., Major, S., Rideout, D., Sorkin, R.D.: A Bell inequality analog in quantum measure theory. Journal of Physics A: Mathematical and Theoretical 40, 501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory 3, 320–375 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hellman, G.: Stochastic Einstein-locality and the Bell theorems. Synthese 53(3), 461–503 (1982)

    Article  MathSciNet  Google Scholar 

  9. Henson, J.: Comparing causality principles. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36(3), 519–543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hofer-Szabo, G., Redei, M., Szabo, L.E.: On Reichenbach’s common cause principle and Reichenbach’s notion of common cause. The British Journal for the Philosophy of Science 50(3), 377 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kari, J.: On the circuit depth of structurally reversible cellular automata. Fundamenta Informaticae 38(1-2), 93–107 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Foundations of Physics 24(3), 379–385 (1994)

    Article  MathSciNet  Google Scholar 

  13. Rédei, M., Summers, S.J.: Local primitive causality and the common cause principle in quantum field theory. Foundations of Physics 32(3), 335–355 (2002)

    Article  MathSciNet  Google Scholar 

  14. Werner, R.F., Wolf, M.M.: All-multipartite Bell-correlation inequalities for two dichotomic observables per site. Physical Review A 64(3), 32112 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arrighi, P., Fargetton, R., Nesme, V., Thierry, E. (2011). Applying Causality Principles to the Axiomatization of Probabilistic Cellular Automata. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds) Models of Computation in Context. CiE 2011. Lecture Notes in Computer Science, vol 6735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21875-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21875-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21874-3

  • Online ISBN: 978-3-642-21875-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics