Skip to main content

Stabilization Control of Chaotic System Based on LaSalle Invariant Principle

  • Conference paper
Communication Systems and Information Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 100))

  • 1386 Accesses

Abstract

In this paper, we propose an adaptive control scheme for the stabilization of chaotic systems, which is based on LaSalle invariant principle. The controller can asymptotically stabilize unstable fixed points of chaotic systems without explicit knowledge of the desired steady-state position. Three nonlinear chaotic systems are chosen as our examples, the well known Chua’s circuit, L\(\ddot{u}\) system and Gyro system. The simulation results demonstrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schöll, E., Schuster, H.G. (eds.): Handbook of Chaos Control. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  2. Cross, M.C., Hohenberg, P.C.: Pattern Formation Outside of Equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  3. Frisch, T., Rica, S., Coullet, P., Gilli, J.M.: Spiral Waves in Liquid Crystal. Phys. Rev. Lett. 72, 1471–1474 (1994)

    Article  Google Scholar 

  4. Fenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J.: Multiple Mechanisms of Spiral Wave Breakup in a Model of Cardiac Electrical Activity. Chaos 12(3), 852–892 (2002)

    Article  Google Scholar 

  5. Varela, H., Beta, C., Bonnefont, A., Krischer, K.: Transitions to Electrochemical Turbulence. Phys. Rev. Lett. 94, 174104 (2005)

    Article  Google Scholar 

  6. Abed, E.H., Varaiya, P.P.: Nonlinear Oscillations in Power Systems. Int J. Electric Power Energy Syst. 6, 37–43 (1989)

    Article  Google Scholar 

  7. Harb, A., Al-Mothafar, M.R.D., Natsheh, A.: Application of Theory to Current Mode Controlled Parallel-Connected DC-DC Boost Converters. Int. J. Model. Simul. 25(1) (2005)

    Google Scholar 

  8. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. John Wiley & Sons, Chichester (1995)

    Book  MATH  Google Scholar 

  9. Endo, T., Chua, L.O.: Chaos From Phase-Locked Loops. IEEE Trans. Circ. Syst. 35, 987–1003 (1988)

    Article  MathSciNet  Google Scholar 

  10. Harb, A.: Nonlinear Chaos Control in a Permanent Magnet Reluctance Machine. Chaos, Solitons & Fractals 19(5), 1217–1224 (2004)

    Article  MATH  Google Scholar 

  11. Mikhailov, A.S., Showalter, K.: Control of Waves, Patterns and Turbulence in Chemical Systems. Phys. Rep. 425, 79–194 (2006)

    Article  MathSciNet  Google Scholar 

  12. Ott, E., Grebogi, C., Yorke, J.A.: Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Braiman, Y., Goldhirsch, I.: Taming Chaotic Dynamics with Weak Periodic Perturbations. Phys. Rev. Lett. 66, 2545–2548 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, C.T.: Linear System Theory and Design. Rinehart & Winston, New York (1984)

    Google Scholar 

  15. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, London (1991)

    MATH  Google Scholar 

  16. Pyragas, K.: Continuous Control of Chaos by Self-controlling Feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  17. Masoller, C., Marti, A.C.: Random Delays and the Synchronization of Chaotic Maps. Phys. Rev. Lett. 94, 134102 (2005)

    Article  Google Scholar 

  18. LaSalle, J.P.: The Extent of Asymptotic Stability. Proc. Natl. Acad. Sci. USA 46(3), 363–365 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartley, T.T.: In: Proceedings of the American Control Conference, Pittsburgh, PA, p. 419 (1989)

    Google Scholar 

  20. Lv, J., Chen, G.: A New Chaotic Attractor Coined. Int. J. Bifurcat. Chaos 12(3), 659–661 (2002)

    Article  Google Scholar 

  21. Chen, H.K.: Chaos and Chaos Synchronization of a Symmetric Gyro with Linear-plus-cubic Damping. Journal of Sound and Vibration 255, 719–740 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, C., Che, Y., Wang, J., Wei, X., Deng, B., Han, C. (2011). Stabilization Control of Chaotic System Based on LaSalle Invariant Principle. In: Ma, M. (eds) Communication Systems and Information Technology. Lecture Notes in Electrical Engineering, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21762-3_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21762-3_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21761-6

  • Online ISBN: 978-3-642-21762-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics