Skip to main content

Optimal Dead-Time Elimination for Voltage Source Inverters

  • Conference paper
Communication Systems and Information Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 100))

Abstract

The dead-time effects of an inverter is analyzed, and a no-dead-time control scheme is presented for the Single-Phase bridge inverter. According to current polarity, a phase-leg can be decomposed into two switching cells without dead-time. Using Immune algorithm (IA) to find the optimal no-dead-time control sequence for the Single-Phase inverter. A simulation based on the no-dead-time control is designed based on matlab / Simulink, and the experiment is done with a full-bridge inverter. The simulation and experimental results verify that the output waveform is improved significantly, DC voltage utilization ratio is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Summers, T.J., Betz, R.E.: Dead-time issues in predictive current control. IEEE Trans. Ind. Appl. 40(3), 835–844 (2004)

    Article  Google Scholar 

  2. Cichowski, Nieznanski, J.: Self-tuning dead-time compensation method for voltage-source inverters. IEEE Power Electron. Lett. 3(2), 72–75 (2005)

    Article  Google Scholar 

  3. Lai, Y.S., Shyu, F.S.: Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects—Part I: Basic development. IEEE Trans. Ind. Appl. 40(6), 1605–1612 (2004)

    Article  Google Scholar 

  4. Kim, H., Moon, H., Youn, M.: On-line dead-time compensation method using disturbance observer. IEEE Trans. Power Electron. 18(6), 1336–1345 (2003)

    Article  Google Scholar 

  5. Urasaki, N., Senjyu, T., Uezatoand, K., Funabashi, T.: Adaptive deadtime compensation strategy for permanent magnet synchronous motor drive. IEEE Trans. Energy Convers. 22(2), 271–280 (2007)

    Article  Google Scholar 

  6. Lin, J.L.: A New Approach of Dead-time Compensation for PWM Voltage Inverters. IEEE Trans.on Circuits and Systems 49(4), 476–483 (2002)

    Article  Google Scholar 

  7. Choi, J.S., Yoo, J.Y., Lim, S.W., Kim, Y.S.: A novel dead time minimization algorithm of the PWM inverter. In: Conference Record of the IEEE IAS, vol. 4, pp. 2188–2193 (1999)

    Google Scholar 

  8. Attaianese, V., Attaianese, Nardi, V., Tomasso, G.: A novel SVM strategy for VSI dead-time-effect reduction. IEEE Trans. Ind. Appl. 41(6), 1667–1674 (2005)

    Article  Google Scholar 

  9. Chen, L., Peng, F.Z.: Dead-time elimination for voltage source inverters. IEEE Trans. Power Electron. 23(2), 574–580 (2008)

    Article  MathSciNet  Google Scholar 

  10. Lin, Y.K., Lai, Y.S.: Dead-Time Elimination of PWM-Controlled Inverter/Converter Without Separate Power Sources for Current Polarity Detection Circuit. IEEE Trans. Power Electron. 56(6), 2121–2127 (2009)

    Google Scholar 

  11. Zhang, A., Huang, Q., Chen, B.: A novel IGBT gate driver to eliminate the dead-time effect. In: Conference Record of the IAS, vol. 2, pp. 913–917 (2005)

    Google Scholar 

  12. Mehrizi-Sani, A., Filizadeh, S.: An Optimized Space Vector Modulation Sequence for Improved Harmonic Performance. IEEE Trans.Ind. Electron. 56(8), 2894–2903 (2009)

    Article  Google Scholar 

  13. Yuan, J., Su, X., Chen, B., Tian, C., Optimum Vector, P.W.M.: Strategy for Three-Phase Inverter Based on Immune Algorithm. Transactions of China Electrotechnical Society 24(9), 114–119 (2009)

    Google Scholar 

  14. Yuan, J., Chen, B., Tian, C., Jia, J.: The research of Inverter’s control based on Immune Algorithm[J]. Proceedings of the CSEE 26(5), 110–117 (2006)

    Google Scholar 

  15. Yuan, J., Chen, B., Jia, J.: Gentic Algorithm based approach for invertor control. Automation of Electric PowerSystems (24), 32–35 (2004)

    Google Scholar 

  16. Yuan, J., Chen, B.: Research on Optimum Control Strategy of Three-Level Single-Phase Full-Bridge Inverter. Transactions of China Electrotechnical Society 21(3), 42–46 (2006)

    MathSciNet  Google Scholar 

  17. Lopez, J., Alvarez, J., Doval-Gandoy, Freijedo, F.D.: Multilevel multiphase space vector PWM algorithm. IEEE Trans. Ind. Electron 55(5), 1933–1942 (2008)

    Article  Google Scholar 

  18. Jiao, L., Wanlei: A novel Genetic algorithm Based on Immunity. IEEE Transactions on System,Man,and Cybernetics-Part A:Systems and humans 30(5), 552–561 (2000)

    Article  Google Scholar 

  19. Jiao, L., Wanlei: A novel Genetic algorithm Based on Immunity. IEEE Transactions on System,Man,and Cybernetics-Part A:Systems and humans 30(5), 552–561 (2000)

    Article  Google Scholar 

  20. Bowes, S.R., Holliday, D.: Optimal regular-sampled PWM inverter control techniques. IEEE Trans. Ind. Electron. 54(3), 1547–1559 (2007)

    Article  Google Scholar 

  21. Chen, B.-Y., Lai, Y.-S.: Switching Control technique of phase-shift- controlled full-bridge converter to improve efficiency under light-load and stand by conditions without additional auxiliary components. IEEE Trans. Power Electron 25(4), 1001–1012 (2009)

    Article  MATH  Google Scholar 

  22. Oggier, G.G., García, G.O., Oliva, A.R.: Switching control strategy to minimize dual active bridge converter losses. IEEE Trans. Power Electron 24(7), 1826–1837 (2009)

    Article  Google Scholar 

  23. Mao, X., Ayyanar, R., Krishnamurthy, H.K.: Optimal variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis. IEEE Trans. Power Electron 24(4), 991–1001 (2009)

    Article  Google Scholar 

  24. Lai, R., Wang, F.F., Burgos, R., Pei, Y., Boroyevich, D., Wang, B., Lipo, T.A., Immanuel, V.D., Karimi, K.J.: A systematic topology evaluation methodology for high-density Three-phase pwm AC-AC converters. IEEE Trans. Power Electron 23(6), 2665–2680 (2008)

    Article  Google Scholar 

  25. Maswood, A.I., Wei, S.: Genetic-algorithm-based solution in PWM converter switching. In: IEE Proceedings Electric Power Applications, May 6, vol. 152(3), pp. 473–478 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiaofang, S., Binbin, R., Yongsheng, Z. (2011). Optimal Dead-Time Elimination for Voltage Source Inverters. In: Ma, M. (eds) Communication Systems and Information Technology. Lecture Notes in Electrical Engineering, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21762-3_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21762-3_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21761-6

  • Online ISBN: 978-3-642-21762-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics