Skip to main content

Study on Calibration of Transfer Character of Ultrasonic Transducer

  • Conference paper
Communication Systems and Information Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 100))

Abstract

Transfer character of ultrasonic transducer often influences on the test signal partly, and then test errors arise. To the problem, a compact method is proposed to calibrate the transfer character in this paper. The experiment data was obtained in water- immerging test of the transducers, and a discrete transfer function is established based on system identification algorithms and then used for transducer calibration. The method is validated effective by experiment. Not only can the characteristic of transducers be indicated, but also a referenced method is presented for calibrating the transfer character of LTI system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yuan, Y.Q.: Ultrasonic transducer. Nanjing University Press, Nanjing (1992)

    Google Scholar 

  2. Chandrana, C., Kharin, N.A., Nair, A.: High resolution fundamental and harmonic imaging using a MEMS fabricated ultrasonic transducer. In: 2007 IEEE Ultrasonics Symposium, New York, October 28-31, pp. 1183–1187 (2007)

    Google Scholar 

  3. Benenson, Z.M., Elizaroy, A.B., Yakovleva, T.V., et al.: Approach to 3-D ultrasound high resolution imaging for mechanically moving large-aperture transducer based upon Fourier transform. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 49(12), 1665–1685 (2002)

    Article  Google Scholar 

  4. Parks, T., Burrus, C.S.: Digital filter design. John wiley and sons, Chichester (1987)

    MATH  Google Scholar 

  5. Hu, G.S.: Digital Signal Processing Theory, Algorithm and implementation. Tsinghua university press, Beijing (2003)

    Google Scholar 

  6. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice-Hall, NJ (1999)

    Google Scholar 

  7. Woo, S.-H., Doo, H.-L.: ‘System identification of structural acoustic system using the scale correction. Mechanical Systems and Signal Processing 20(1), 389–402 (2006)

    Google Scholar 

  8. Dong, X.-J., Meng, G., Peng, J.-C.: Vibration control of piezoelectric smart structures based on system identification technique: Numerical simulation and experimental study. Journal of Sound and Vibration 297(6), 680–693 (2006)

    Article  MathSciNet  Google Scholar 

  9. Zhang, C.X., Ren, J.S.: The Order Discernment of Transfer Function for Linear System. Journal of Nanjing University of Science and Technology 21(2), 106–109 (1997)

    MathSciNet  Google Scholar 

  10. Li, Q.F., Shi, L.H., Liang, D.K.: Method of Compensating Transducers Based on Digital Filtering in Concrete Test. Journal of Nanjing University of Aeronautics and Astronautics 40(1), 55–59 (2008)

    Google Scholar 

  11. Ohara, Y., Kawashima, K.: Detection of Internal Micro Defects by Nonlinear Resonant Ultrasonic Method Using Water Immersion. Japanese Journal of Applied Physics 43(5), 3119–3120 (2004)

    Article  Google Scholar 

  12. Hak-joon, K.I.M., Sung-Jin, S.O.N.G., Lester, W.S.: Modeling Ultrasonic Pulse-Echo Signals from a Flat-Bottom Hole in Immersion Testing Using a Multi-Gaussian Beam. Journal of Nondestructive Evaluation 23(1), 11–19 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Q., Zhang, Q., Zhao, M., Shi, L. (2011). Study on Calibration of Transfer Character of Ultrasonic Transducer. In: Ma, M. (eds) Communication Systems and Information Technology. Lecture Notes in Electrical Engineering, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21762-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21762-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21761-6

  • Online ISBN: 978-3-642-21762-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics