Skip to main content

The Design and Implementation of DDR PHY Static Low-Power Optimization Strategies

  • Conference paper
Communication Systems and Information Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 100))

Abstract

The static power of DDR PHY has increasingly become the limit of the low-power application of system-on-a-chip (SoC). An optimization of static power based on “behavior” and “state” of DDR PHY static power is proposed, considering the design principle and physical properties. Experimental results show that the proposed optimization strategy can achieve the highest 59.12% reduction in work mode and only 0.723uW power consumption in sleep mode.

This work was sponsored by the National Scientific Foundation of China (Grant No. 61006029) and Jiangsu Scientific Foundation (Grant No. BK2010165).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dongwook, L., Sungjoo, Y., Kiyoung, C.: Entry control in network-on-chip for memory power reduction. In: International Symposium on Low Power Electronics and Design (ISLPED), pp. 171–176. ACM/IEEE (2008)

    Google Scholar 

  2. Hai, H., Shin, K.G., Lefurgy, C., Keller, T.: Improving energy efficiency by making DRAM less randomly accessed. In: International Symposium on Low Power Electronics and Design, pp. 393–398 (2005)

    Google Scholar 

  3. Devarapalli, S.V., Zarkesh-Ha, P., Suddarth, S.C.: A robust and low power dual data rate (DDR) flip-flop using c-elements. In: 11th International Symposium on Quality Electronic Design, pp. 147–150 (2010)

    Google Scholar 

  4. Peiyi, Z., McNeely, J., Golconda, P., Bayoumi, M.A., Barcenas, R.A., Weidong, K.: Low-Power Clock Branch Sharing Double-Edge Triggered Flip-Flop. IEEE Transaction on Very Large Scale Integration (VLSI) Systems 15, 338–345 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ge, W., Zhao, M., Wu, C., He, J. (2011). The Design and Implementation of DDR PHY Static Low-Power Optimization Strategies. In: Ma, M. (eds) Communication Systems and Information Technology. Lecture Notes in Electrical Engineering, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21762-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21762-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21761-6

  • Online ISBN: 978-3-642-21762-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics