Skip to main content

On the Capacity of Transient Internal States in Liquid-State Machines

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

Abstract

Liquid-state machines (LSM) represent a class of neural networks that are able to introduce multitasking by implicit representation of input information over the entire network components. How exactly the input information can be represented and how the computations are accomplished, stay however unresolved. In order to tackle this issue, we demonstrate how LSM can process different input information as a varying set of transiently stable states of collective activity. This is performed by adopting a relatively complex dynamic synaptic model. Some light is shed on the relevance of the usage of the developed framework to mimic complex cortical functions, e.g. content-addressable memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Velde, F.: Is the brain an effective Turing machine or a finite-state machine?. Journal Psychological Research 55(1), 71–79 (1993)

    Google Scholar 

  2. van der Velde, F., de Kamps, M.: Neural blackboard architectures of combinatorial structures in cognition. Behavioral and Brain Sciences 29(01), 37–70 (2006)

    Google Scholar 

  3. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  Google Scholar 

  4. Maass, W., Markram, H.: On the computational power of circuits of spiking neurons. J. Comput. Syst. Sci. 69(4), 593–616 (2004)

    Article  MathSciNet  Google Scholar 

  5. Maass, W.: Liquid computing. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 507–516. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. von der Malsburg, C.: The what and why of binding: The modeler’s perspective (September 1999)

    Google Scholar 

  7. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations. Neuron 24, 49–65 (1999)

    Article  Google Scholar 

  8. Sejnowski, T.J., Paulsen, O.: Network Oscillations: Emerging Computational Principles. J. Neurosci. 26(6), 1673–1676 (2006)

    Article  Google Scholar 

  9. Singer, W.: Understanding the brain. European Molecular Biology Org. 8, 16–19 (2007)

    Google Scholar 

  10. Tsodyks, M., Uziel, A., Markram, H.: Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci. 20, 50 (2000)

    Article  Google Scholar 

  11. Gilbert, C.D., Sigman, M.: Brain states: top-down influences in sensory processing. Neuron 54(5), 677–696 (2007)

    Article  Google Scholar 

  12. Ford, J.M., Krystal, J.H., Mathalon, D.H.: Neural Synchrony in Schizophrenia: From Networks to New Treatments. Schizophr Bull. 33(4), 848–852 (2007)

    Article  Google Scholar 

  13. Bhattacharya, J., Petsche, H.: Shadows of artistry: cortical synchrony during perception and imagery of visual art. Cognitive Brain Research 13(2), 179–186 (2002)

    Article  Google Scholar 

  14. Cheadle, S., Bauer, F., Parton, A., Müller, H., Bonneh, Y.S., Usher, M.: Spatial structure affects temporal judgments: Evidence for a synchrony binding code. Journal of Vision 8(7), 1–12 (2008)

    Article  Google Scholar 

  15. Wennekers, T., Ay, N.: Spatial and temporal stochastic interaction in neuronal assemblies. Journal Theory in Biosciences 122(1), 5–18 (2003)

    Article  Google Scholar 

  16. El-Laithy, K., Bogdan, M.: synchrony state generation: An approach using stochastic synapses. J. of Artificial Intelligence and Soft Computing Research 1(1), 17–26 (2011)

    Google Scholar 

  17. Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. Proc. of the Nat. Academy of Sciences of the USA 95(9), 5323–5328 (1998)

    Article  Google Scholar 

  18. El-Laithy, K., Bogdan, M.: Synchrony state generation in artificial neural networks with stochastic synapses. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5768, pp. 181–190. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Brunel, N., Rossum, M.v.: Quantitative investigations of electrical nerve excitation treated as polarization: Louis lapicque 1907; Translated Biol. Cybern. 97(5), 341–349 (2007)

    Article  Google Scholar 

  20. El-Laithy, K., Bogdan, M.: Predicting spike-timing of a thalamic neuron using a stochastic synaptic model. In: ESANN Proceedings, pp. 357–362 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El-Laithy, K., Bogdan, M. (2011). On the Capacity of Transient Internal States in Liquid-State Machines. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics