Skip to main content

An Empirical Study on the Performance of Spectral Manifold Learning Techniques

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6791))

Included in the following conference series:

Abstract

In recent years, there has been a surge of interest in spectral manifold learning techniques. Despite the interest, only little work has focused on the empirical behavior of these techniques. We construct synthetic data of variable complexity and observe the performance of the techniques as they are subjected to increasingly difficult problems. We evaluate performance in terms of both a classification and a regression task. Our study includes Isomap, LLE, Laplacian eigenmaps, and diffusion maps. Among others, our results indicate that the techniques are highly dependent on data density, sensitive to scaling, and greatly influenced by intrinsic dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  2. Tenenbaum, J., de Silva, V., Langford, J.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Brand, M.: Charting a Manifold. In: NIPS, vol. 15, pp. 977–984. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  5. Donoho, D.L., Grimes, C.: Hessian Eigenmaps: Locally Linear Embedding Techniques for High-dimensional Data. In: PNAS, vol. 100, pp. 5591–5596. National Academy Sciences, Washington (2003)

    Google Scholar 

  6. Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment. SIAM J. Sci. Comput. 26, 313–338 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coifman, R.R., Lafon, S.: Diffusion Maps. Applied and Computational Harmonics Analysis 21, 5–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Yeh, M.C., Lee, I.H., Wu, G., Wu, Y., Chang, E.Y.: Manifold Learning, a Promised Land or Work in Progress. In: Proc. of IEEE Intl. Conf. on Multimedia and Expo, pp. 1154–1157. IEEE Press, New York (2005)

    Google Scholar 

  9. Niskanen, M., Silven, O.: Comparison of Dimensionality Reduction Methods for Wood Surface Inspection. In: Proc. of the 6th Intl. Conference on Quality Control by Artificial Vision, pp. 179–188 (2003)

    Google Scholar 

  10. van der Maaten, L., Postma, E.O., van den Herik, H.J.: Dimensionality Reduction: A Comparative Review. Technical report, Tilburg Uni (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mysling, P., Hauberg, S., Pedersen, K.S. (2011). An Empirical Study on the Performance of Spectral Manifold Learning Techniques. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21735-7_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21734-0

  • Online ISBN: 978-3-642-21735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics