Skip to main content

The Relevance of Peptides That Bind FeS Clusters, Phosphate Groups, Cations or Anions for Prebiotic Evolution

  • Chapter
  • First Online:
Origins of Life: The Primal Self-Organization
  • 1312 Accesses

Abstract

The focus of this chapter is on the significance for evolution of three-dimensional peptide motifs made from main chain atoms of a few amino acid residues. The CONH group of every peptide bond is a polar group with the oxygen having substantial fractional negative charge and the hydrogen having significant partial positive charge. Appropriate conformations of polypeptides create binding sites for either anions or cations by bridging of the form NH–anion–HN or CO–cation–OC between non-adjacent CONH groups. These motifs are more common in proteins than is generally realized. About 8% of amino acid residues in native folded proteins belong to anion-binding motifs and another 8% belong to cation-binding motifs. Examination of native and synthetic polypeptides suggests these figures were even higher for peptides occurring during early evolution. The most common cation-binding motif is one named the niche, while the most common anion-binding motif is called the nest. Some nests bind single atoms and some bind groups like FeS clusters and phosphates. The P-loop, which is the commonest ATP/GTP-binding feature in proteins, as well as being one of the most ancient features of proteins in general, incorporates a phosphate-binding nest within its active site. If di- or triphosphates were the major sources of instant energy in the earliest forms of metabolism, phosphate-binding nests can be said to have retained the structure required for energy generation and thus be one of the most ancient molecular relics in existence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armen RS, DeMarco ML, Alonso DOV, Daggett V (2004) Pauling and Corey’s α-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc Natl Acad Sci USA 101:11622–11627

    Article  PubMed  CAS  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Lett. 452(3):121–7

    Google Scholar 

  • Berkessel A, Koch B, Toniolo C, Rainaldi M, Broxterman QB, Kaptein B (2006) Asymmetric enone epoxidation by short solid-phase bound peptides: further evidence for catalyst helicity and catalytic activity of individual peptide strands. Biopolymers 84(1):90–96

    Article  PubMed  CAS  Google Scholar 

  • Brakoulias A, Jackson RM (2004) Towards a structural classification of phosphate binding sites in protein-nucleotide complexes. Proteins 56:250–260

    Article  PubMed  CAS  Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge University Press, UK

    Google Scholar 

  • Chernoff YO (2004) Amyloidogenic domains, prions and structural inheritance: rudiments of early life or recent acquisition? Curr Opin Chem Biol 8:665–671

    Article  PubMed  CAS  Google Scholar 

  • Chung NM, Lohrmann R, Orgel LE, Rabinowitz J (1971) Mechanism of the trimetaphosphate-induced peptide synthesis. Tetrahedron 27:1205–1210

    Article  CAS  Google Scholar 

  • Daggett V (2006) α-sheet: the toxic conformer in amyloid diseases? Acc Chem Res 39:594–602

    Article  PubMed  CAS  Google Scholar 

  • De Duve C (1987) Selection by differential molecular survival: a possible mechanism of early chemical evolution. Proc Natl Acad Sci USA 84:8253–8256

    Article  PubMed  Google Scholar 

  • Fandrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin – even an ordinary globular protein can assume a rogue guise if conditions are right. Nature 410:165–166

    Article  PubMed  CAS  Google Scholar 

  • Grillo-Bosch D, Carulla N, Cruz M, Sanchez L, Pujol-Pina R, Madurga S, Rabanal F, Giralt E (2009) Retro-enantio N-methylated peptides as beta-amyloid aggregation inhibitors. ChemMedChem 4(9):1488–1494

    Article  PubMed  CAS  Google Scholar 

  • Harford C, Sarkar B (1999) Amino terminal Cu(II) and Ni(II) binding ATCUN motif of proteins and peptides. Acc Chem Res 30:123–130

    Article  Google Scholar 

  • Hayward S, Milner-White EJ (2008) The geometry of α-sheet: implications for its possible function as amyloid precursor in proteins. Proteins 71:415–425

    Article  PubMed  CAS  Google Scholar 

  • Hedlund J, Cantoni R, Baltscheffsky M, Baltscheffsky H (2006) Analysis of ancient sequence motifs in the H+-PPase family. FEBS J 273:5183–5193

    Article  PubMed  CAS  Google Scholar 

  • Hennet RJ-C, Holm NG, Engel MH (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? Naturwissenschaften 79:361–365

    Article  PubMed  CAS  Google Scholar 

  • Kubik S (2009) Amino acid containing anion receptors. Chem Soc Rev 38:585–605

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG (2010) The RNA dreamtime. Bioessays 32:866–871

    Article  PubMed  CAS  Google Scholar 

  • Leader DP, Milner-White EJ (2009) Motivated proteins: a web application for studying small three-dimensional protein motifs. BMC Bioinformatics 10(1):60–64, http://motif.gla.ac.uk/

    Article  PubMed  Google Scholar 

  • Lupas AN, Ponting CP, Russell RB (2001) On the evolution of protein folds: are similar motifs the result of convergence, insertion or relics of an ancient peptide world? J Struct Biol 134:191–203

    Article  PubMed  CAS  Google Scholar 

  • Ma B-G, Chen L, Ji H-F, Chen Z-H, Yang F-R, Wang L, Qu G, Jiang Y-Y, Ji C, Zhang H-Y (2008) Characters of very ancient proteins. Biochem Biophys Res Com 366:607–611

    Article  PubMed  CAS  Google Scholar 

  • Milner-White EJ, Russell MJ (2005) Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion binding motifs (nests). Orig Life Evol Biosph 35:19–27

    Article  PubMed  CAS  Google Scholar 

  • Milner-White EJ, Russell MJ (2008) Predicting the conformations of peptides and proteins in early evolution. Biol Direct 3:3

    Article  PubMed  Google Scholar 

  • Milner-White EJ, Russell MJ (2010) Polyphosphate-peptide synergy and the organic takeover at the emergence of life. J Cosmol 10:2

    Google Scholar 

  • Milner-White EJ, Nissink JW, Allen FH, Duddy WJ (2004) Recurring main-chain anion-binding motifs in short polypeptides: nests. Acta Crystallogr D Biol Crystallogr 60(11):1935–1942

    Article  PubMed  Google Scholar 

  • Milner-White EJ, Watson JD, Qi G, Hayward S (2006) Amyloid formation may involve alpha- to beta sheet interconversion via peptide plane flipping. Structure 14(9):1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Ni F, Gao X, Zhao Z-X, Huang C, Zhao Y-F (2009) On the electrophilicity of cyclic acylphosphoramidates (CAPAs) postulated as intermediates. Eur J Organic Chem 18:3026–3035

    Article  Google Scholar 

  • Pajewski R, Ferdani R, Pajewska J, Li R, Gokel GW (2005) Cation dependence of chloride ion complexation by open-chained receptor molecules in chloroform solution. J Am Chem Soc 127(51):18281–18295

    Article  PubMed  CAS  Google Scholar 

  • Pal D, Suehnel J, Weiss M (2002) New principles of protein structure: nests, eggs and what next? Angew Chem 41:4663–4665

    Article  CAS  Google Scholar 

  • Pauling L, Corey RB (1951) The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci USA 37:251–256

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz J, Flores R, Krebsback R, Rogers G (1969) Peptide formation in the presence of linear or cyclic polyphosphates. Nature 224:795–796

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan V, Ranbhor R, Kumar A, Durani S (2006) The link between sequence and conformation in protein structures appears to be stereochemically established. J Phys Chem B 110:9314–9326

    Article  PubMed  CAS  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London 154:377–402

    Article  PubMed  CAS  Google Scholar 

  • Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29:358–363

    Article  PubMed  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  PubMed  CAS  Google Scholar 

  • Sui H, Han B-G, Lee JK, Wallan P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  PubMed  CAS  Google Scholar 

  • Torrance GM, Leader DP, Gilbert DR, Milner-White EJ (2009) A novel main chain motif in proteins bridged by cationic groups: the niche. J Mol Biol 385(4):1076–1086

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Nicolet Y, Fontecilla-Camps J (2010) An ancient protein fold links metal-based gas reactions with the RNA world. J Cosmol 10:4

    Google Scholar 

  • Watson JD, Milner-White EJ (2002a) A novel main-chain anion-binding site in proteins: the Nest. A combination of phi,psi values in successive residues gives rise to anion-binding sites that occur commonly and are found at functionally important regions. J Mol Biol 315(2):171–182

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Milner-White EJ (2002b) The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurrence in cation and anion-binding regions of proteins. J Mol Biol 315(2):183–191

    Article  PubMed  CAS  Google Scholar 

  • Wolf YI, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation and subfunctionalization. Biol Direct 2:14

    Article  PubMed  Google Scholar 

  • Yamanaka J, Inomata K, Yamagata Y (1988) Condensation of oligoglycines with trimeta- and tetrametaphosphate in aquaeous solutions. Orig Life Evol Biosph 18:165–178

    Article  PubMed  CAS  Google Scholar 

  • Zhou YF, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K1 channel-Fab complex at 2.0 Å resolution. Nature 414:43–48

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. James Milner-White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milner-White, E.J. (2011). The Relevance of Peptides That Bind FeS Clusters, Phosphate Groups, Cations or Anions for Prebiotic Evolution. In: Egel, R., Lankenau, DH., Mulkidjanian, A. (eds) Origins of Life: The Primal Self-Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21625-1_7

Download citation

Publish with us

Policies and ethics