Skip to main content

Abiotic Photosynthesis: From Prebiotic Chemistry to Metabolism

  • Chapter
  • First Online:
Origins of Life: The Primal Self-Organization

Abstract

The basic concepts necessary to understand the origin of life are presented. The existing models conducting to the emergence of biochemistry from geochemistry on Earth are introduced. The chapter is focused on abiotic photosynthesis as a way to capture energy and generate the core of central metabolism. Universality in intermediate metabolism, mineral catalysis, hydrothermal vents, and the iron-sulfur proposals are discussed. Special emphasis is given to the model of non-enzymatic prebiotic metabolism that can potentially connect the RNA world and the compartmentalization in protocells approach. Catalysis in mineral surfaces is suggested as the main mechanism for the possible origin of the central metabolic pathways. Candidate semiconductor minerals such as zinc sulfide could have driven this prebiotic chemistry in the young planet. A shallow-water hydrothermal vent system is presented as a model environment where the first microorganisms on Earth used the suggested non-enzymatic chemical reactions as a pioneer mechanism for carbon dioxide fixation and energy storage that resulted in prebiotic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While viruses deserve further consideration, they are not considered to be alive in this chapter.

  2. 2.

    All modern eukaryotic photosynthesis is based on the contribution of prokaryote-derived endosymbionts, making in consequence the analysis of extant eukaryotes irrelevant to the origin of photosynthesis.

  3. 3.

    Homeostasis is defined here as a state of dynamic equilibrium that does not modify the identity of the physical system.

  4. 4.

    Anaplerosis is the act of replenishing TCA cycle intermediates that have been extracted for biosynthesis in cataplerotic reactions. Cataplerosis describes reactions involved in the disposal of TCA cycle intermediates.

References

  • Allwood AC, Walter MR et al (2006) Stromatolite reef from the early archaean era of Australia. Nature 441(7094):714–718

    Article  PubMed  CAS  Google Scholar 

  • Cairns-Smith AG (1977) Takeover mechanisms and early biochemical evolution. Biosystems 9(2–3):105–109

    Article  PubMed  CAS  Google Scholar 

  • Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276(5690):807–808

    Article  CAS  Google Scholar 

  • Cairns-Smith AG, Hall AJ et al (1992) Mineral theories of the origin of lie and an iron sulfide example. Orig Life Evol Biosph 22(1–4):161–180

    Article  CAS  Google Scholar 

  • Cammack R (2006) Oxford dictionary of biochemistry and molecular biology. Oxford University Press, Oxford

    Google Scholar 

  • Cavalier-Smith T (2001) Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J Mol Evol 53(4):555–595

    Article  PubMed  CAS  Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    Article  PubMed  CAS  Google Scholar 

  • Cleaves HJ, Chalmers JH et al (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38(2):105–115

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS (2000) The ultraviolet history of the terrestrial planets – implications for biological evolution. Planet Space Sci 48(2–3):203–214

    Article  CAS  Google Scholar 

  • Cody GD, Boctor NZ et al (2000) Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289(5483):1337–1340

    Article  PubMed  CAS  Google Scholar 

  • Corliss JB, Lyle M et al (1978) The chemistry of hydrothermal mounds near the Galapagos Rift. Earth Planet Sci Lett 40(1):12–24

    Article  CAS  Google Scholar 

  • Corliss JB, Dymond J et al (1979) Submarine thermal springs on the Galápagos Rift. Science 203(4385):1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Corliss JB, Baross JA et al (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. Oceanol Acta 4(Supplement):56–69

    Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • deDuve C (1991) Blueprint for a cell: the nature and the origin of life. Carolina Biological Co, Burlington

    Google Scholar 

  • Deamer DW (1986) Role of amphiphilic compounds in the evolution of membrane-structure on the early Earth. Orig Life Evol Biosph 17(1):3–25

    Article  PubMed  CAS  Google Scholar 

  • Deamer DW (1997) The first living systems: a bioenergtic perspective. Microbiol Mol Biol Rev 61(2):239–261

    PubMed  CAS  Google Scholar 

  • Eigen M (1992) Steps towards life: a perspective on evolution. Oxford University Press, New York

    Google Scholar 

  • Eggins BR, Robertson PKJ (1998) Factors affecting the photoelectrochemical fixation of carbon dioxide with semiconductor colloids. J Photochem Photobiol A-Chem 118:31–40

    Google Scholar 

  • Eschenmoser A (2007) The search for the chemistry of life’s origin. Tetrahedron 63(52):12821–12843

    Article  CAS  Google Scholar 

  • Fitch WM, Upper K (1987) The phylogeny of transfer-RNA sequences provides evidence for the ambiguity reduction in the origin of the genetic-code. Cold Spring Harb Symp Quant Biol 52:759–767

    PubMed  CAS  Google Scholar 

  • Forster AC, Church GM (2006) Towards synthesis of a minimal cell. Mol Syst Biol 2:45

    Article  PubMed  Google Scholar 

  • Forterre P, Philippe H (1999) The last universal common ancestor (LUCA), simple or complex? Biol Bull 196(3):373–375

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319(6055):618–618

    Article  Google Scholar 

  • Guzman MI, Martin ST (2008) Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry. Int J Astrobiol 7(3–4):271–278

    Article  CAS  Google Scholar 

  • Guzman MI, Martin ST (2009) Prebiotic metabolism: production by mineral photoelectrochemistry of α-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology 9(9):833–842

    Article  PubMed  CAS  Google Scholar 

  • Guzman MI, Martin ST (2010) Photo-production of lactate from glyoxylate: how minerals can facilitate energy storage in a prebiotic world. Chem Commun 46:2265–2267

    Article  CAS  Google Scholar 

  • Hanczyc MM, Fujikawa SM et al (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622

    Article  PubMed  CAS  Google Scholar 

  • Henglein A (1984) Catalysis of photochemical reactions by colloidal semiconductors. Pure Appl Chem 56(9):1215–1224

    Article  CAS  Google Scholar 

  • Henglein A, Gutiérrez M et al (1984) Photochemistry of colloidal metal sulfides 6. Kinetics of interfacial reactions at ZnS-particles. Ber Bunsenges Phys Chem 88(2):170–175

    CAS  Google Scholar 

  • Holm NG, Cairnssmith AG et al (1992) Marine hydrothermal systems and the origin of life: future research. Orig Life Evol Biosph 22(1–4):181–190

    Article  PubMed  CAS  Google Scholar 

  • Horowitz N, Miller S (1962) In: Zechmeister L (ed) Progress in the chemistry of natural products, vol 20. Springer Verlag, pp 423–459

    Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276(5310):245–247

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (2006) α-Hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science 314(5799):630–632

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Gallenberger M et al (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc Natl Acad Sci USA 105(22):7851–7856

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF (1994) “Foreward” in Origins of life: The Central Concept, DW Deamer and GR Fleischacker (eds), Jones and Barlett, Boston, pp xi–xii

    Google Scholar 

  • Kandler O (1994) The early diversification of life. In: Bengtson S, Bergström J, Vidal G, Knoll A (eds) Early Life on Earth, Columbia University Press, New York, pp 152–160

    Google Scholar 

  • Kasting JF (1993) Earths early atmosphere. Science 259(5097):920–926

    Article  PubMed  CAS  Google Scholar 

  • Kee T, Pacek M (2011) Origins of phosphorylated biomolecules. In: Egel R, Mulkidjanian AY, Lankenau D-H (eds) Origins of life: the primal self-organization. Springer-Verlag, Berlin

    Google Scholar 

  • Koonin EV (2009) On the origin of cells and viruses. Ann NY Acad Sci 1178(1):47–64

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (2000) Ten commandments: lessons from the enzymology of DNA replication. J Bacteriol 182(13):3613–3618

    Article  PubMed  CAS  Google Scholar 

  • Lankenau D-H (ed) (2007) Germline double-strand break repair and gene targeting in Drosophila: a trajectory system throughout evolution. In: Genome integrity: facets and perspectives. Springer, Berlin Heidelberg

    Google Scholar 

  • Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res 24(9):857

    Article  Google Scholar 

  • Luisi PL (2003) Autopoiesis: a review and a reappraisal 49-59. Naturwissenschaften 90:49–59

    PubMed  CAS  Google Scholar 

  • Luisi PL (2006) The emergence of life: from chemical origins to synthetic biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Luisi LP, Ferri F et al (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 358(1429):59–83

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York

    Google Scholar 

  • Menor-Salvan C, Ruiz-Bermejo M et al (2009) Synthesis of pyrimidines and triazines in ice: implications for the prebiotic chemistry of nucleobases. Chem Eur J 15(17):4411–4418

    Article  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529

    Article  PubMed  CAS  Google Scholar 

  • Miller SL (1987) Which organic compounds could have occurred on the prebiotic Earth? Cold Spring Harb Symp Quant Biol 52:17–27

    PubMed  CAS  Google Scholar 

  • Mojzsis SJ, Arrhenius G et al (1996) Evidence for life on Earth before 3800 million years ago. Nature 383:55–59

    Article  Google Scholar 

  • Moreira D, López-García P (2007) The last common ancestor of modern cells. In: Gargaud M, Martin H, Claeys P (eds) Lectures in astrobiology, vol 7. Springer, Berlin/Heidelberg, pp 305–317

    Chapter  Google Scholar 

  • Morowitz HJ, Heinz B et al (1988) The chemical logic of a minimum protocell. Orig Life Evol Biosph 18(3):281–287

    Article  PubMed  CAS  Google Scholar 

  • Morowitz HJ, Deamer DW et al (1991) Biogenesis as an evolutionary process. J Mol Evol 33(3):207–208

    Article  PubMed  CAS  Google Scholar 

  • Morowitz HJ, Kostelnik JD et al (2000) The origin of intermediary metabolism. Proc Natl Acad Sci USA 97(14):7704–7708

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY (2009) On the origin of life in the Zinc world: I. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol Direct 4:26

    Article  PubMed  Google Scholar 

  • Mulkidjanian AY, Galperin MY (2009) On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 4:27

    Article  PubMed  Google Scholar 

  • Nelson DL, Cox M et al (2000) Principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  • Oparin AI (1938) The origin of life. Macmillan, New York

    Google Scholar 

  • Orgel LE (2000) Self-organizing biochemical cycles. Proc Natl Acad Sci USA 97(23):12503–12507

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39(2):99–123

    Article  PubMed  CAS  Google Scholar 

  • Oró J, Kimball AP (1961) Synthesis of purines under possible primitive Earth conditions. 1. Adenine from hydrogen cyanide. Arch Biochem Biophys 94:221–227

    Article  Google Scholar 

  • Oró J, Kimball AP (1962) Synthesis of purines under possible primitive earth conditions. 2. Purine intermediates from hydrogen cyanide. Arch Biochem Biophys 96:293–313

    Article  PubMed  Google Scholar 

  • Powner MW, Gerland B et al (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242

    Article  PubMed  CAS  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc 154:377–402

    Article  CAS  Google Scholar 

  • Sadekar S, Raymond J et al (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23:2001–2007

    Article  PubMed  CAS  Google Scholar 

  • Schidlowski M (1988) A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318

    Article  CAS  Google Scholar 

  • Shapiro R (1986) Origins: a skeptic’s guide to the creation of life on earth. Summit Books, New york

    Google Scholar 

  • Shapiro R (2006) Small molecule interactions were central to the origin of life. Q Rev Biol 81(2):105–125

    Article  PubMed  Google Scholar 

  • Smith E, Morowitz HJ (2004) Universality in intermediary metabolism. Proc Natl Acad Sci USA 101(36):13168–13173

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan V, Morowitz HJ (2009) The canonical network of autotrophic intermediary metabolism: minimal metabolome of a reductive chemoautotroph. Biol Bull 216:126–130

    PubMed  CAS  Google Scholar 

  • Summers DP, Noveron J et al (2009) Energy transduction inside of amphiphilic vesicles: encapsulation of photochemically active semiconducting particles. Orig Life Evol Biosph 39(2):127–140

    Article  PubMed  CAS  Google Scholar 

  • Szostak JW, Bartel DP et al (2001) Synthesizing life. Nature 409(6818):387

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK (2007) A fifth pathway of carbon fixation. Science 318(5857):1732–1733

    Article  PubMed  CAS  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431(7008):549–552

    Article  PubMed  CAS  Google Scholar 

  • Tice MM, Lowe DR (2006) Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34:37–40

    Article  CAS  Google Scholar 

  • Varela FG, Maturana HR et al (1974) Autopoiesis: the organization of living systems, its characterization and a model. Curr Mod Biol 5:187–196

    PubMed  CAS  Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates – theory of surface metabolism. Microbiol Rev 52(4):452–484

    PubMed  Google Scholar 

  • Wächtershäuser G (1990a) Evolution of the 1st metabolic cycles. Proc Natl Acad Sci USA 87(1):200–204

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (1990b) The case for the chemoautotrophic origin of life in an iron-sulfur world. Orig Life Evol Biosph 20(2):173–176

    Article  Google Scholar 

  • Wächtershäuser G (2000) Life as we don’t know it. Science 289(5483):1307–1308

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4(4):584–602

    Article  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of prokaryotic domain. Primary kingdoms. Proc Natl Acad Sci USA 74(11):5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O et al (1990) Towards a natural system of organisms. Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12):4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Zhang XV, Martin ST (2006) Driving parts of Krebs cycle in reverse through mineral photochemistry. J Am Chem Soc 128(50):16032–16033

    Article  PubMed  CAS  Google Scholar 

  • Zhang XV, Martin ST et al (2004) Mineral-assisted pathways in prebiotic synthesis: photoelectrochemical reduction of carbon(+IV) by manganese sulfide. J Am Chem Soc 126(36):11247–11253

    Article  PubMed  CAS  Google Scholar 

  • Zhang XV, Ellery SP et al (2007) Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic syntheis. J Photochem Photobiol A Chem 185:301–311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo I. Guzman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guzman, M.I. (2011). Abiotic Photosynthesis: From Prebiotic Chemistry to Metabolism. In: Egel, R., Lankenau, DH., Mulkidjanian, A. (eds) Origins of Life: The Primal Self-Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21625-1_4

Download citation

Publish with us

Policies and ethics