Skip to main content

Musical Tonality, Neural Resonance and Hebbian Learning

  • Conference paper
Mathematics and Computation in Music (MCM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6726))

Included in the following conference series:

Abstract

A new theory of musical tonality is explored, which treats the central auditory pathway as a complex nonlinear dynamical system. The theory predicts that as networks of neural oscillators phase-lock to musical stimuli, stability and attraction relationships will develop among frequencies, and these dynamic forces correspond to perceptions of stability and attraction among musical tones. This paper reports on an experiment with learning in a model auditory network. Results suggest that Hebbian synaptic modification can change the dynamic responses of the network in some ways but not in others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zuckerkandl, V.: Sound and Symbol: Music and the External World. Princeton University Press, Princeton (1956)

    Google Scholar 

  2. Large, E.W., Tretakis, A.E.: Tonality and Nonlinear Resonance. In: Avanzini, G., Lopez, L., Koelsch, S., Majno, M. (eds.) The Neurosciences and Music II: From Perception to Performance. Annals of the New York Academy of Sciences, vol. 1060, pp. 53–56 (2005)

    Google Scholar 

  3. Shapira Lots, I., Stone, L.: Perception of musical consonance and dissonance: an outcome of neural synchronization. Journal of The Royal Society Interface 5(29), 1429–1434 (2008)

    Article  Google Scholar 

  4. Large, E.W.: A dynamical systems approach to musical tonality. In: Huys, R., Jirsa, V.K. (eds.) Nonlinear Dynamics in Human Behavior. Studies in Computational Intelligence, vol. 328, pp. 193–211. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Lerdahl, F.: Tonal Pitch Space. Oxford University Press, New York (2001)

    Google Scholar 

  6. Larson, S.: Musical forces and melodic expectations: Comparing computer models and experimental results. Music Percept 21(4), 457–498 (2004)

    Article  Google Scholar 

  7. Bharucha, J.J.: Anchoring effects in music: The resolution of dissonance. Cogn. Psychol. 16, 485–518 (1984)

    Article  Google Scholar 

  8. Burns, E.M.: Intervals, scales, and tuning. In: Deustch, D. (ed.) The Psychology of Music, pp. 215–264. Academic Press, San Diego (1999)

    Chapter  Google Scholar 

  9. Ohm, G.S.: Uber die Denition des Tones, nebst daran geknufter Theorie der Sirene und ahnlicher tonbildender Vorichtungen. Ann. Phys. Chem. 135(8), 513–565 (1843)

    Google Scholar 

  10. Helmholtz, H.L.F.: On the sensations of tone as a physiological basis for the theory of music. Dover Publications, New York (1863)

    Google Scholar 

  11. Plomp, R., Levelt, W.J.M.: Tonal consonance and critical bandwidth. J. Acoust. Soc. Am. 38, 548–560 (1965)

    Article  Google Scholar 

  12. Kameoka, A., Kuriyagawa, M.: Consonance theory part II: Consonance of complex tones and its calculation method. J. Acoust. Soc. Am. 45, 1460–1471 (1969)

    Article  Google Scholar 

  13. Dowling, W.J., Harwood, D.L.: Music Cognition. Academic Press, San Diego (1986)

    Google Scholar 

  14. Krumhansl, C.L.: Cognitive foundations of musical pitch. Oxford University Press, NY (1990)

    Google Scholar 

  15. Cuddy, L.L., Lunney, C.A.: Expectancies generated by melodic intervals: Perceptual judgements of melodic continuity. P&P 57, 451–462 (1995)

    Google Scholar 

  16. Schellenberg, E.G.: Expectancy in melody: Tests of the implication realization model. Cognition 58, 75–125 (1996)

    Article  Google Scholar 

  17. Knopoff, L., Hutchinson, W.: An index of melodic activity. Interface 7, 205–229 (1978)

    Article  Google Scholar 

  18. Temperley, D.: The cognition of basic musical structures. MIT Press, Cambridge (2001)

    Google Scholar 

  19. Pearce, M.T., Wiggins, G.A.: Expectation in Melody: The Influence of Context and Learning. Music Perception 23(5), 377–405 (2006)

    Article  Google Scholar 

  20. Eguìluz, V.M., Ospeck, M., Choe, Y., Hudspeth, A.J., Magnasco, M.O.: Essential nonlinearities in hearing. PhRvL 84(22), 5232 (2000)

    Google Scholar 

  21. Langner, G.: Periodicity coding in the auditory system. Hear. Res. 60, 115–142 (1992)

    Article  Google Scholar 

  22. Joris, P.X., Schreiner, C.E., Rees, A.: Neural Processing of Amplitude-Modulated Sounds. Physiol. Rev. 84(2), 541–577 (2004)

    Article  Google Scholar 

  23. Escabi, M.A., Schreiner, C.E.: Nonlinear Spectrotemporal Sound Analysis by Neurons in the Auditory Midbrain. J. Neurosci. 22(10), 4114–4131 (2002)

    Google Scholar 

  24. Langner, G.: Temporal processing of periodic signals in the auditory system: Neuronal representation of pitch, timbre, and harmonicity. Z. Audiol. 46(1), 80–21 (2007)

    Google Scholar 

  25. Sutter, M.L., Schreiner, C.: Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. J. Neurophysiol. 65(5), 1207–1226 (1991)

    Google Scholar 

  26. Lee, K.M., Skoe, E., Kraus, N., Ashley, R.: Selective Subcortical Enhancement of Musical Intervals in Musicians. J. Neurosci. 29(18), 5832–5840 (2009)

    Article  Google Scholar 

  27. Zhang, J., Harbottle, G., Wang, C., Kong, Z.: Oldest playable musical instruments found at Jiahu early Neolithic site in China. Nature 401, 366–368 (1999)

    Google Scholar 

  28. Large, E.W., Almonte, F., Velasco, M.: A canonical model for gradient frequency neural networks. Physica D: Nonlinear Phenomena 239(12), 905–911 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997)

    Book  MATH  Google Scholar 

  30. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  MATH  Google Scholar 

  31. Large, E.W., Almonte, F.: Phase-locked neural oscillation predicts human auditory brainstem responses to musical intervals. PNAS Under Review (2011)

    Google Scholar 

  32. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89(4), 334–368 (1982)

    Article  Google Scholar 

  33. Hoppensteadt, F.C., Izhikevich, E.M.: Synaptic organizations and dynamical properties of weakly connected neural oscillators II: Learning phase information. Biol. Cybern. 75, 126–135 (1996)

    MATH  Google Scholar 

  34. Duke, T., Julicher, F.: Active traveling wave in the cochlea. PhRvL 90(15), 158101 (2003)

    Google Scholar 

  35. Kern, A., Stoop, R.: Essential role of couplings between hearing nonlinearities. Phys. Rev. Lett. 91(12), 128101–128104 (2003)

    Article  Google Scholar 

  36. Prince, A., Smolensky, P.: Optimality: From Neural Networks to Universal Grammar. Science 275, 1604–1610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Large, E.W. (2011). Musical Tonality, Neural Resonance and Hebbian Learning. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds) Mathematics and Computation in Music. MCM 2011. Lecture Notes in Computer Science(), vol 6726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21590-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21590-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21589-6

  • Online ISBN: 978-3-642-21590-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics