Skip to main content

Optical Flow Reliability Model Approximated with RBF

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6692))

Included in the following conference series:

  • 1850 Accesses

Abstract

This Paper presents a new approach based on RBF NN (Radial Based Function Neural Network) in order to produce high quality optical-flow confidence estimation. The new approach is compared with a widely used confidence estimator obtaining a significant improvement. In order to evaluate the presented approach performance we have used a multi-scale version of the well known Lukas and Kanade optical flow model and widely used benchmarking optical flow sequences. The new approach aims refining optical flow representation maps but is easily applicable to other vision primitives (stereo vision, object segmentation, object recognition, object tracking, etc). Therefore, this approach represents an automatic reliability estimation model based on artificial neural networks of interest for multiple vision primitives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Díaz, J., Ros, E., Mota, S., Carrillo, R.: Local image phase, energy and orientation extraction using FPGAs. Int. Journal of Electronics 95(7), 743–760 (2008)

    Article  Google Scholar 

  2. Bonato, V., Marques, E., Constantinides, G.: A parallel hardware architecture for scale and rotation invariant feature detection. IEEE Transactions on Circuits and Systems for Video Technology 18(12), 1703–1712 (2008)

    Article  Google Scholar 

  3. Anguita, M., Diaz, J., Ros, E., Fernandez-Baldomero, F.J.: Optimization strategies for high-performance computing of optical-flow in general-purpose processors. IEEE Trans. on Circuits and Systems for Video Technology 19(10), 1475–1488 (2009)

    Article  Google Scholar 

  4. Diaz, J., Ros, E., Carrillo, R.: Real-time system for high-image resolution disparity estimation. IEEE Trans. on Image Processing 16(1), 280–285 (2007)

    Article  MathSciNet  Google Scholar 

  5. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  6. Liu, H.C., Hong, T.S., Herman, M., Camus, T., Chellappa, R.: Accuracy vs Efficiency Trade-offs in Optical Flow Algorithms. Computer Vision and Image Understanding 3, 271–286 (1998)

    Article  Google Scholar 

  7. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. IJCAI., pp. 674–679 (1981)

    Google Scholar 

  8. Bainbridge-Smith, A., Lane, R.G.: Measuring Confidence in Optical Flow Estimation. IEE Electronic Letters 10, 882–884 (1996)

    Article  Google Scholar 

  9. Felsberg, M., Kalkan, S., Krueger, N.: Continuous dimensionality characterization of image structures. Image and Vision Computing 27, 628–630 (2009)

    Article  Google Scholar 

  10. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A Database and Evaluation Methodology for Optical Flow. Computer Vision, 1–8 (2011)

    Google Scholar 

  11. Middlebury Optical flow evaluation dataset, http://vision.middlebury.edu/flow/eval/

  12. Bouguet, J.-Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the Aalgorithm. Intel. Corp., Microprocessor Research Labs (1999)

    Google Scholar 

  13. Park, J., Sandberg, I.W.: Universal Approximation Using Radial-Basis-Function Networks. Neural computation 3(2), 246–257 (1991)

    Article  Google Scholar 

  14. Fleet, D.J.: Measurement of Image Velocity. In: Engineering and Computer Science. Kluwer Academic Publishers, Norwell (1992)

    Google Scholar 

  15. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numerical Algorithms 24, 239–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Broomhead, D.S., Lowe, D.: Multi-variable functional interpolation and adaptive networks. In: Complex Systems, pp. 269-303 (1988)

    Google Scholar 

  17. Thorpe, S., Gaustrais, J.: Rank Order Coding. In: Bower, J. (ed.) Computational Neuroscience: Trends in Research. Plenum Press, New York (1998)

    Google Scholar 

  18. Kondermann, C., Mester, R., Garbe, C.: A Statistical Confidence Measure for Optical Flows. In: ECCV 2008, Part I, pp. 290–301 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodrigo, A., Javier, D., Pilar, O., Pablo, G., Eduardo, R. (2011). Optical Flow Reliability Model Approximated with RBF. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21498-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21498-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21497-4

  • Online ISBN: 978-3-642-21498-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics