Skip to main content

A Coarse-to-Fine Approach to Computing the k-Best Viterbi Paths

  • Conference paper
Combinatorial Pattern Matching (CPM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6661))

Included in the following conference series:

  • 1094 Accesses

Abstract

The Hidden Markov Model (HMM) is a probabilistic model used widely in the fields of Bioinformatics and Speech Recognition. Efficient algorithms for solving the most common problems are well known, yet they all have a running time that is quadratic in the number of hidden states, which can be problematic for models with very large state spaces. The Viterbi algorithm is used to find the maximum likelihood hidden state sequence, and it has earlier been shown that a coarse-to-fine modification can significantly speed up this algorithm on some models. We propose combining work on a k-best version of Viterbi algorithm with the coarse-to-fine framework. This algorithm may be used to approximate the total likelihood of the model, or to evaluate the goodness of the Viterbi path on very large models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albrechtsen, A., Sand Korneliussen, T., Moltke, I., van Overseem Hansen, T., Nielsen, F.C., Nielsen, R.: Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genetic Epidemiology 33(3), 266–274 (2009)

    Article  Google Scholar 

  2. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of the 1st North American Chapter of the Association for Computational Linguistics conference, pp. 132–139. Morgan Kaufmann Inc., San Francisco (2000)

    Google Scholar 

  3. Charniak, E., Johnson, M.: Coarse-to-fine n -best parsing and MaxEnt discriminative reranking. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics - ACL 2005, June 1, pp. 173–180 (2005)

    Google Scholar 

  4. Chong, J., Yi, Y., Faria, A., Satish, N., Keutzer, K.: Data-parallel large vocabulary continuous speech recognition on graphics processors. In: Proceedings of the 1st Annual Workshop on Emerging Applications and Many Core Architecture (EAMA), pp. 23–35. sn (2008)

    Google Scholar 

  5. Drinnenberg, I., Weinberg, D., Xie, K., Mower, J., Wolfe, K., Fink, G., Bartel, D.: RNAi in Budding Yeast. Science 326(5952), 544 (2009)

    Article  Google Scholar 

  6. Du, J., Rozowsky, J., Korbel, J., Zhang, Z., Royce, T., Schultz, M., Snyder, M.: A Supervised Hidden Markov Model Framework for Efficiently Segmenting Tiling Array Data in Transcriptional and ChIP-chip Experiments: Systematically Incorporating Validated Biological Knowledge. Bioinformatics (2008)

    Google Scholar 

  7. Dutheil, J.Y., Ganapathy, G., Hobolth, A., Mailund, T., Uyenoyama, M.K., Schierup, M.H.: Ancestral Population Genomics: The Coalescent Hidden Markov Model Approach. Genetics 183, 259–274 (2009)

    Article  Google Scholar 

  8. Finkel, R., Bentley, J.: Quad trees a data structure for retrieval on composite keys. Acta informatica 4(1), 1–9 (1974)

    Article  MATH  Google Scholar 

  9. Fridlyand, J., Snijders, A., Pinkel, D., Albertson, D., Jain, A.: Hidden Markov models approach to the analysis of array CGH data. Journal of Multivariate Analysis 90(1), 132–153 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goodman, J.: Global thresholding and multiple-pass parsing. In: Proceedings of the Second Conference on Empirical Methods in Natural Language Processing, pp. 11–25 (1997)

    Google Scholar 

  11. Huang, L., Chiang, D.: Better k-best parsing. In: Proc. of IWPT, pp. 53–64 (2005)

    Google Scholar 

  12. Hudson, R.: Generating samples under a Wright Fisher neutral model of genetic variation. Bioinformatics 18(2), 337 (2002)

    Article  Google Scholar 

  13. Karplus, K., Barrett, C., Cline, M., Diekhans, M., Grate, L., Hughey, R.: Predicting protein structure using only sequence information. Proteins Suppl. 3, 121–125 (1999)

    Article  Google Scholar 

  14. Knapp, K., Chen, Y.P.P.: An evaluation of contemporary hidden Markov model genefinders with a predicted exon taxonomy. Nucleic acids research 35(1), 317–324 (2007)

    Article  Google Scholar 

  15. Kupiec, J.: Robust part-of-speech tagging using a hidden Markov model. Computer Speech & Language 6(3), 225–242 (1992)

    Article  Google Scholar 

  16. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition (1990)

    Google Scholar 

  17. Raphael, C.: Coarse-to-fine dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(12), 1379–1390 (2001)

    Article  Google Scholar 

  18. Senf, A., Chen, X.W.: Identification of genes involved in the same pathways using a Hidden Markov Model-based approach. Bioinformatics (Oxford, England) 25(22), 2945–2954 (2009)

    Article  Google Scholar 

  19. Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S.F.A., Hakonarson, H., Bucan, M.: PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome research 17(11), 1665–1674 (2007)

    Article  Google Scholar 

  20. Willett, D., Neukirchen, C., Rigoll, G.: Efficient search with posterior probability estimates in HMM-based speech recognition. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998 (Cat. No.98CH36181), vol. 2, pp. 821–824. IEEE, Los Alamitos (1998)

    Chapter  Google Scholar 

  21. Yin, J., Jordan, M.I., Song, Y.S.: Joint estimation of gene conversion rates and mean conversion tract lengths from population SNP data. Bioinformatics (Oxford, England) 25(12), i231–i239 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nielsen, J. (2011). A Coarse-to-Fine Approach to Computing the k-Best Viterbi Paths. In: Giancarlo, R., Manzini, G. (eds) Combinatorial Pattern Matching. CPM 2011. Lecture Notes in Computer Science, vol 6661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21458-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21458-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21457-8

  • Online ISBN: 978-3-642-21458-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics