Skip to main content

Unique Perfect Phylogeny Is NP-Hard

  • Conference paper
Combinatorial Pattern Matching (CPM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6661))

Included in the following conference series:

Abstract

We answer, in the affirmative, the following question proposed by Mike Steel as a $100 challenge: “Is the following problem NP -hard? Given a ternary phylogenetic X -tree \({\cal T}\) and a collection \(\cal Q\) of quartet subtrees on X , is \({\cal T}\) the only tree that displays  \(\cal Q\) ?” [28, 29] As a particular consequence of this, we show that the unique chordal sandwich problem is also NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal of Computing 23, 1216–1224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Böcker, S., Bryant, D., Dress, A.W.M., Steel, M.A.: Algorithmic aspects of tree amalgamation. Journal of Algorithms 37, 522–537 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  4. Bonet, M.L., Linz, S., John, K.S.: The complexity of finding multiple solutions to betweenness and quartet compatibility. CoRR abs/1101.2170 (2011), http://arxiv.org/abs/1101.2170

  5. Bui-Xuan, B.M., Habib, M., Paul, C.: Competitive graph searches. Journal Theoretical Computer Science 393, 72–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9, 205–212 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Camin, J., Sokal, R.: A method for deducing branching sequences in phylogeny. Evolution 19, 311–326 (1965)

    Article  Google Scholar 

  8. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Information and Computation 125, 1–12 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dekker, M.C.H.: Reconstruction methods for derivation trees. Master’s thesis, Vrije Universiteit, Amsterdam (1986)

    Google Scholar 

  10. Estabrook, G.F.: Cladistic methodology: a discussion of the theoretical basis for the induction of evolutionary history. Annual Review of Ecology and Systematics 3, 427–456 (1972)

    Article  Google Scholar 

  11. Estabrook, G.F., Johnson Jr., C.S., McMorris, F.R.: An idealized concept of the true cladistic character. Mathematical Biosciences 23, 263–272 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Estabrook, G.F., Johnson Jr., C.S., McMorris, F.R.: An algebraic analysis of cladistic characters. Discrete Mathematics 16, 141–147 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Estabrook, G.F., Johnson Jr., C.S., McMorris, F.R.: A mathematical foundation for the analysis of cladistic character compatibility. Mathematical Biosciences 29, 181–187 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. North Holland (2004)

    Google Scholar 

  15. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of Algorithms 19, 449–473 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. Journal of the ACM 40, 1108–1133 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gordon, A.D.: Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification 3, 335–348 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Habib, M., Stacho, J.: Unique perfect phylogeny is NP-hard. CoRR abs/1011.5737 (2010), http://arxiv.org/abs/1011.5737

  20. Juban, L.: Dichotomy theorem for the generalized unique satisfiability problem. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 327–337. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Kannan, S.K., Warnow, T.J.: Triangulating 3-colored graphs. SIAM Journal on Discrete Mathematics 5, 249–258 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lam, F., Gusfield, D., Sridhar, S.: Generalizing the four gamete condition and splits equivalence theorem: Perfect phylogeny on three state characters. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 206–219. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. LeQuesne, W.J.: Further studies on the uniquely derived character concept. Systematic Zoology 21, 281–288 (1972)

    Article  Google Scholar 

  24. LeQuesne, W.J.: The uniquely evolved character concept and its cladistic application. Systematic Zoology 23, 513–517 (1974)

    Article  Google Scholar 

  25. LeQuesne, W.J.: The uniquely evolved character concept. Systematic Zoology 26, 218–223 (1977)

    Article  Google Scholar 

  26. McMorris, F.R., Warnow, T., Wimer, T.: Triangulating vertex colored graphs. SIAM Journal on Discrete Mathematics 7, 296–306 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Semple, C., Steel, M.: A characterization for a set of partial partitions to define an X-tree. Discrete Mathematics 247, 169–186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Semple, C., Steel, M.: Phylogenetics. Oxford lecture series in mathematics and its applications. Oxford University Press, Oxford (2003)

    Google Scholar 

  29. Steel, M.: Personal webpage, http://www.math.canterbury.ac.nz/~m.steel/

  30. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9, 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. West, D.: Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  32. Wilson, E.O.: A consistency test for phylogenies based upon contemporaneous species. Systematic Zoology 14, 214–220 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Habib, M., Stacho, J. (2011). Unique Perfect Phylogeny Is NP-Hard. In: Giancarlo, R., Manzini, G. (eds) Combinatorial Pattern Matching. CPM 2011. Lecture Notes in Computer Science, vol 6661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21458-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21458-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21457-8

  • Online ISBN: 978-3-642-21458-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics