Skip to main content

Ion Beam Therapy for Gynecological Tumors

  • Chapter
  • First Online:
Ion Beam Therapy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL,volume 320))

  • 1983 Accesses

Abstract

Most of the clinical results for gynecological tumors treated with ion beam therapy (IBT) have been reported from Tsukuba (protons) and NIRS (carbon ions). Several phase I/II dose-escalation studies performed at NIRS indicate that high doses of carbon ion radiotherapy (CIRT) can achieve promising local control without severe complications in patients with locally advanced cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Benedet, F. Odicino, P. Maisonneuve, et al., Carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 83, 41–78 (2003)

    Article  Google Scholar 

  2. J.A. Green, J.M. Kirwan, J.F. Tierney, et al., Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet 358, 781–786 (2001)

    Article  Google Scholar 

  3. P.J. Eifel, K. Winter, M. Morris, et al., Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of Radiation Therapy Oncology Group Trial (RTOG) 90-01. J. Clin. Oncol. 22, 872–880 (2004)

    Article  Google Scholar 

  4. J.M. Kirwan, P. Symonds, J.A. Green, et al., A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother. Oncol. 68, 217–226 (2003)

    Article  Google Scholar 

  5. T. Arimoto, T.G. Kitagawa, H. Tsujii, et al., High-energy proton beam radiation therapy for gynecologic malignancies. Potential of proton beam as an alternative to brachytherapy. Cancer 68, 79–83 (1991)

    Google Scholar 

  6. K. Kagei, K. Tokuuye, T. Okumura, et al., Long-term treatment results of proton beam therapy for carcinoma of the uterine cervix. Int. J. Radiat. Oncol. 55, 1265–1271 (2003)

    Article  Google Scholar 

  7. T. Nakano, M. Suzuki, H. Tsujii, et al., The phase I/II clinical study of carbon ion therapy for cancer of the uterine cervix. Cancer J. Sci. Am. 362–369 (1999)

    Google Scholar 

  8. S. Kato, T. Ohno, H. Tsujii, et al., Dose escalation study of carbon ion radiotherapy for locally advanced carcinoma of the uterine cervix. Int. J. Radiat. Oncol. 31, 1341–1346 (2006)

    Google Scholar 

  9. T. Ohno, S. Kato, E. Sasaki, et al., Carbon ion radiotherapy for vaginal malignant melanoma: a case report. Int. J. Gynecol. Cancer 17, 1163–1166 (2007)

    Article  Google Scholar 

  10. M. Endo, H. Koyama-Ito, S. Minohara, et al., HIPLAN: a heavy ion treatment planning system at HIMAC. J. Jpn. Soc. Ther. Radiol. Oncol. 8, 231–238 (1996)

    Google Scholar 

  11. C.A. Perez, P.W. Grigsby, K.S. Chao, et al., Tumor size, irradiation dose, and long-term outcome of carcinoma of uterine cervix. Int. J. Radiat. Oncol. 41, 307–317 (1998)

    Article  Google Scholar 

  12. J.D. Kochanski, N. Mehta, L.K. Mell, et al., Outcome of cervical cancer patients treated with intensity-modulated radiation therapy. Int. J. Radiat. Oncol. 63, 214–215 (2005)

    Article  Google Scholar 

  13. H.O. Smith, M.F. Tiffany, C.R. Qualls, C.R. Keys, The rising incidence of adenocarcinomas relative to squamous cell carcinomas of the uterine cervix – a 24-year population based study. Gynecol. Oncol. 78, 97–105 (2000)

    Article  Google Scholar 

  14. J.L. Benedet, F. Odicino, P. Maisonneuve, et al., Carcinoma of the cervix uteri. J. Epidemiol. Biostat. 6, 7–43 (2001)

    Google Scholar 

  15. A. Baalbergen, P.C. Ewing-Graham, W.C. Hop, et al., Prognostic factors in adenocarcinoma of the uterine cervix. Gynecol. Oncol. 92, 262–267 (2004)

    Article  Google Scholar 

  16. P.J. Eifel, M. Morris, M.J. Oswald, et al., Adenocarcinoma of the uterine cervix. Prognosis and patterns of failure in 367 cases. Cancer 65, 2507–2514 (1990)

    Google Scholar 

  17. M.P. Hopkins, G.W. Morley, A comparison of adenocarcinoma and squamous cell carcinoma of the cervix. Obstet. Gynecol. 77, 912–918 (1991)

    Google Scholar 

  18. J.S. Lea, E.E. Sheets, R.M. Wenham, et al., Stage IIB-IVB cervical adenocarcinoma: prognostic factors and survival. Gynecol. Oncol. 84, 115–119 (2002)

    Article  Google Scholar 

  19. M.A. Quinn, J.L. Benedet, F. Odicino, et al., Carcinoma of the cervix uteri. FIGO 6th annual report on the results of treatment in gynecological cancer. Int. J. Gynaecol. Obstet. 95(Suppl 1), S43–S103 (2006)

    Google Scholar 

  20. P.W. Grigsby, C.A. Perez, R.R. Kuske, et al., Adenocarcinoma of the uterine cervix: lack of evidence for a poor prognosis. Radiother. Oncol. 12, 289–296 (1988)

    Article  Google Scholar 

  21. A. Ahmad, W. D’Souza, M. Salehpour, et al., Intensity-modulated radiation therapy after hysterectomy: comparison with conventional treatment and sensitivity of the normal-tissue-sparing effect to margin size. Int. J. Radiat. Oncol. 62, 1117–1124 (2005)

    Article  Google Scholar 

  22. A. Buchali, S. Koswig, S. Dinges, et al., Impact of the filling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynaecological cancer. Radiother. Oncol. 52, 29–34 (1999)

    Article  Google Scholar 

  23. A. Taylor, M.E. Powell, An assessment of interfractional uterine and cervical motion: implications for radiotherapy target volume definition in gynaecological cancer. Radiother. Oncol. 88, 250–257 (2008)

    Article  Google Scholar 

  24. L. van de Bunt, U.A. van der Heide, M. Ketelaars, et al., Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: The impact of tumor regression. Int. J. Radiat. Oncol. 64, 189–196 (2006)

    Article  Google Scholar 

  25. B.M. Beadle, A. Jhingran, M. Salehpour, et al., Cervix regression and motion during the course of external beam chemoradiation for cervical cancer. Int. J. Radiat. Oncol. 73, 235–241 (2009)

    Article  Google Scholar 

  26. K. Lim, V. Kelly, J. Stewart, et al., Pelvic radiotherapy for cancer of the cervix: is what you plan actually what you deliver? Int. J. Radiat. Oncol. 74, 304–312 (2009)

    Article  Google Scholar 

  27. M. Hockel, C. Knoop, K. Schlenger, et al., Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26, 45–50 (1993)

    Article  Google Scholar 

  28. K. Ando, S. Koike, C. Ohira, et al., Accelerated reoxygenation of a murine fibrosarcoma after carbon-ion. Int. J. Radiat. Biol. 75, 505–512 (1999)

    Article  Google Scholar 

  29. M.R. Raju, H.I. Amols, E. Bain, et al., A heavy particle comparative study. Part III. OER and RBE. Br. J. Radiol. 51, 712–719 (1978)

    Google Scholar 

  30. T. Nakano, Y. Suzuki, T. Ohno, et al., Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin. Cancer Res. 12, 2185–2190 (2006)

    Article  Google Scholar 

  31. T. Nakano, K. Oka, A. Ishikawa, et al., Correlation of cervical carcinoma c-erb B-2 oncogene with cell proliferation parameters in patients treated with radiation therapy for cervical carcinoma. Cancer 79, 513–520 (1997)

    Article  Google Scholar 

  32. Y. Suzuki, K. Oka, T. Ohno, et al., Prognostic impact of mitotic index of proliferating cell populations in cervical cancer patients treated with carbon ion beam. Cancer 115, 1875–1882 (2009)

    Article  Google Scholar 

  33. F. Dehdashti, M.A. Mintun, J.S. Lewis, et al., In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur. J. Nucl. Med. Mol. Imaging 30, 844–850 (2003)

    Article  Google Scholar 

  34. F. Dehdashti, P.W. Grigsby, M.A. Mintun, et al., Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response – a preliminary report. Int. J. Radiat. Oncol. 55, 1233–1238 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohno, T., Kato, S. (2012). Ion Beam Therapy for Gynecological Tumors. In: Linz, U. (eds) Ion Beam Therapy. Biological and Medical Physics, Biomedical Engineering, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21414-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21414-1_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21413-4

  • Online ISBN: 978-3-642-21414-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics