Skip to main content

Biofilms and Role to Infection and Disease in Veterinary Medicine

  • Chapter
  • First Online:
Biofilms and Veterinary Medicine

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 6))

Abstract

Biofilms play an increasing role within the medical and veterinary community. Due to the increased resistance of a biofilm, they can have direct and indirect effects upon a range of infections and diseases including chronic non-healing wounds, implant/prosthesis infection and mastitis. These problems can have significant effects on other industries, for example mastitis can have a detrimental effect on milk yield in the dairy industry. The degree of severity biofilms can cause increases the pressure on the veterinary industry to diagnose and treat infections and diseases quicker and with more effective results. With maturity, biofilms may become more resistant to the effects of antimicrobials which make the infection harder to treat. As elaborated on in previous chapters, many antibiotherapy treatments currently used to treat bacterial infections are aimed at planktonic bacterial cells as opposed to cells encased in a biofilm; this makes their treatment increasingly problematic. Without adequate diagnostic and treatment protocols to treat veterinary biofilms, their impact will remain a significant challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison DG, Ruiz B et al (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167(2):179–184

    Article  PubMed  CAS  Google Scholar 

  • Anderson GG, O'Toole GA (2010) Innate and induced resistance mechanisms of bacterial biofilms. Current Topics in Microbiology and Immunology 322: 85–105

    Google Scholar 

  • Antonios VS, Noel AA et al (2006) Prosthetic vascular graft infection: a risk factor analysis using a case-control study. J Infect 53(1):49–55

    Article  PubMed  Google Scholar 

  • Bishop Y (ed) (2005) The veterinary formulary. Pharmaceutical Press, London

    Google Scholar 

  • Bjarnsholt T, Kirketerp-Møller K et al (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10

    Article  PubMed  Google Scholar 

  • Bridier A, Dubois-Brissonnet F et al (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods 82:64–70

    Article  PubMed  CAS  Google Scholar 

  • Brooun A, Liu S et al (2000) a dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44(3):640–646

    Article  PubMed  CAS  Google Scholar 

  • Browing A, Cumberlege et al (1995) The Dairy products (Hygiene) Regulation 1995. 1086. f. a. f. Ministry of Agriculture

    Google Scholar 

  • Burke JP (2003) Infection control – a problem for patient safety. N Engl J Med 348(7):651–656

    Article  PubMed  Google Scholar 

  • Carrick JB, Begg AP (2008) Peripheral blood leukocytes. Vet Clin North Am Equine Pract 24(2):239–259

    Article  PubMed  Google Scholar 

  • Cerca N, Jefferson K et al (2006) Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun 74(8):4849–4855

    Article  PubMed  CAS  Google Scholar 

  • Chaw KC, Manimaran M et al (2005) Role of silver ions in destabilisation of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermis biofilms. Antimicrob Agents Chemother 49(12):4853–4859

    Article  PubMed  CAS  Google Scholar 

  • Chin J (1982) Raw milk; a continuing vehicle for the transmission of infectious disease agents in the United States. J Infect Dis 146(3):440–441

    Article  PubMed  CAS  Google Scholar 

  • Choong S, Wood S et al (2001) Catheter-associated urinary tract infection and encrustation. Int J Antimicrob Agents 17(4):305–310

    Article  PubMed  CAS  Google Scholar 

  • Cifrian E, Guidry AJ et al (1994) Adherence of Staphylococcus aureus to cultured bovine mammary epithelial cells. J Dairy Sci 77(4):970–983

    Article  PubMed  CAS  Google Scholar 

  • Clutterbuck AL, Woods EJ et al (2007) Biofilms and their relevance to veterinary medicine. Vet Microbiol 121(1–2):1–17

    Article  PubMed  CAS  Google Scholar 

  • Cochrane CA (1997) Models in vivo of wound healing in the horse and the role of growth factors. Vet Dermatol 8:259–272

    Article  Google Scholar 

  • Costerton JW (2004) A short history of the development of the biofilm concept. In: Ghannoum MA, O’Toole GA (eds) Microbial biofilms. ASM Press, Washington, pp 4–19

    Google Scholar 

  • Costerton JW, Lewandowski Z et al (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS et al (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Veeh R et al (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112(10):1466–1477

    PubMed  CAS  Google Scholar 

  • Cowan MM, Warren TM et al (1991) Mixed-species colonization of solid surfaces in laboratory biofilms. Biofouling 3(1):23–34

    Article  Google Scholar 

  • Davies DG, Geesey GG (1995) Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61(3):860–867

    PubMed  CAS  Google Scholar 

  • Davies DG, Chakrabarty AM et al (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa.. Appl Environ Microbiol 59(4):1181–1186

    PubMed  CAS  Google Scholar 

  • Deluyker HA, Chester ST et al (1999) A multilocation clinical trial in lactating dairy cows affected with clinical mastitis to compare the efficacy of treatment with intramammary infusions of a lincomycin/neomycin combination with an ampicillin/cloxacillin combination. J Vet Pharmacol Ther 22(4):274–282

    Article  PubMed  CAS  Google Scholar 

  • Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7(2):277–281

    Article  PubMed  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  Google Scholar 

  • Edwards JF, Lassala AL et al (2008) Staphylococcus-associated abortions in Ewes with long-term central venous catheterization. Vet Pathol 45(6):881–888

    Article  PubMed  CAS  Google Scholar 

  • Erskine RJ, Walker RD et al (2002) Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. J Dairy Sci 85(5):1111–1118

    Article  PubMed  CAS  Google Scholar 

  • Fedtke I, Gotz F et al (2004) Bacterial evasion of innate host defenses – the Staphylococcus aureus lesson. Int J Med Microbiol 294:189–194

    Article  PubMed  CAS  Google Scholar 

  • Fera P, Siebel MA et al (1989) Seasonal variations in bacterial colonisation of stainless steel, aluminium and polycarbonate surfaces in a sea water flow system. Biofouling 1(3):251–261

    Article  Google Scholar 

  • Ferris FG, Schultze S et al (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55(5):1249–1257

    PubMed  CAS  Google Scholar 

  • Ganz T (2001) Antimicrobial proteins and peptides in host defense. Semin Respir Infect 16(1):4–10

    Article  PubMed  CAS  Google Scholar 

  • Gillespie IA, Adak GK et al (2003) Milkborne general outbreaks of infectious intestinal disease, England and Wales, 1992–2000. Epidemiol Infect 130(3):461–468

    PubMed  CAS  Google Scholar 

  • Guérin-Faublée V, Tardy F et al (2002) Antimicrobial susceptibility of Streptococcus species isolated from clinical mastitis in dairy cows. Int J Antimicrob Agents 19(3):219–226

    Article  PubMed  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13(1):7–10

    Article  PubMed  CAS  Google Scholar 

  • Hammond A, Dertien J et al (2010) Serum inhibits P. aeruginosa biofilm formation on plastic surfaces and intravenous catheters. J Surg Res 159(2):735–746

    Article  PubMed  CAS  Google Scholar 

  • Hansson CJ, Hoborn J et al (1995) The microbial flora in venous leg ulcers without signs of clinical infection. Acta Derm Venereol 75:24–30

    PubMed  CAS  Google Scholar 

  • Harmon RJ (1994) Physiology of mastitis and factors affecting somatic cell counts. J Dairy Sci 77(7):2103–2112

    Article  PubMed  CAS  Google Scholar 

  • Hensen SM, Pavičić MJ et al (2000) Location of Staphylococcus aureus within the experimentally infected Bovine Udder and the expression of capsular polysaccharide type 5 in situ. J Dairy Sci 83(9):1966–1975

    Article  PubMed  CAS  Google Scholar 

  • Hillerton JE, Kleim KE (2002) Effective treatment of Streptococcus uberis clinical mastitis to minimise the use of antibiotics. Journal of Dairy Science 85(4):1009–1014

    Google Scholar 

  • Jackson PGG (1986) Equine mastitis: comparative lessons. Equine Vet J 18(2):88–89

    Article  PubMed  CAS  Google Scholar 

  • Jensen PO, Bjarnsholt T et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153(5):1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Jesaitis AJ, Franklin MJ et al (2003) Compromised host defence on Pseudomonas aeruginosa biofilms: characterisation of neutrophil and biofilm interactions. J Immunol 171:4329–4339

    PubMed  CAS  Google Scholar 

  • Kharazmi A (1991) Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett 30:201–205

    Article  PubMed  CAS  Google Scholar 

  • Khoury AE, Lam K et al (1992) Prevention and control of bacterial infections associated with medical devices. ASAIO J 38(3):M174–M178

    Article  PubMed  CAS  Google Scholar 

  • Kowalczuk D, Ginalska G et al (2010) Characterization of the developed antimicrobial urological catheters. Int J Pharm 402(1–2):175–183

    Google Scholar 

  • Krahwinkel DJ, Boothe HW (2006) Topical and systemic medications for wounds. Vet Clin North Am Small Anim Pract 36:739–757

    Article  PubMed  CAS  Google Scholar 

  • Lappin-Scott HM, Bass C (2001) Biofilm formation: attachment, growth and detachment of microbes from surfaces. Am J Infect Control 29:250–251

    Article  PubMed  CAS  Google Scholar 

  • Lasa I (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9(1):21–28

    PubMed  CAS  Google Scholar 

  • LeBlanc M, McLaurin BI et al (1986) Relationships among serum immunoglobulin concentration in foals, colostral specific gravity, and colostral immunoglobulin concentration. J Am Vet Med Assoc 189(1):57–60

    PubMed  CAS  Google Scholar 

  • Lee B, Haagensen AJ et al (2005) Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43(10):5247–5255

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry 70(2):267–274

    PubMed  CAS  Google Scholar 

  • Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

    Article  PubMed  CAS  Google Scholar 

  • Lin P, Chen H-L, Huang C-T, Su L-H, Chiu C-H (2010) Biofilm production, use of intravascular indwelling catheters and inappropriate antimicrobial therapy as predictors of fatality in Chryseobacterium meningosepticum bacteraemia. International Journal of Antimicrobial Agents 36(5):436–440

    Google Scholar 

  • Marion K, Freney J et al (2006) Using an efficient biofilm detaching agent: an essential step for the improvement of endoscope reprocessing protocols. J Hosp Infect 64(2):136–142

    Article  PubMed  CAS  Google Scholar 

  • Marsh-Ng ML, Burney DP et al (2007) Surveillance of infections associated with intravenous catheters in dogs and cats in an intensive care unit. J Am Anim Hosp Assoc 43(1):13–20

    PubMed  Google Scholar 

  • Mathews KA, Brooks MJ et al (1996) A prospective study of intravenous catheter contamination. J Vet Emerg Crit Care 6(1):33–43

    Article  Google Scholar 

  • Melchior MB, Fink-Gremmels J et al (2006a) Comparative assessment of the antimicrobial susceptibility of Staphylococcus aureus isolates from bovine mastitis in biofilm versus planktonic culture. J Vet Med B 53(7):326–332

    Article  CAS  Google Scholar 

  • Melchior MB, Vaarkamp H et al (2006b) Biofilms: a role in recurrent mastitis infections? Vet J 171(3):398–407

    Article  PubMed  CAS  Google Scholar 

  • Melchior MB, Fink-Gremmels J et al (2007) Extended antimicrobial susceptibility assay for Staphylococcus aureus isolates from bovine mastitis growing in biofilms. Vet Microbiol 125(1–2):141–149

    Article  PubMed  CAS  Google Scholar 

  • Melchoir MB, van Osch MHJ et al (2009) Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains. Vet Microbiol 137:83–89

    Article  Google Scholar 

  • Morley PS, Apley MD et al (2005) Antimicrobial drug use in veterinary medicine. J Vet Intern Med 19(4):617–629

    Article  PubMed  Google Scholar 

  • Nagase N, Sasaki M et al (2002) Isolation and species distribution of staphylococci from animal and human skin. J Vet Med Sci 64(3):245–250

    Article  PubMed  Google Scholar 

  • Nicoll A, Gay NJ et al (2005) Theory of infectious disease transmission and control. In: Borriello SP, Murray PR, Funke G (eds) Topley and Wilson's microbiology and microbial infections: bacteriology, vol 1. Hodder Arnold, London, pp 335–358

    Google Scholar 

  • Oliveira R, Nunes SF et al (2007) Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol 124:187–191

    Article  PubMed  CAS  Google Scholar 

  • Orsini JA, Elce Y et al (2004) Management of severely infected wounds in the equine patient. Clin Tech Equine Prac 3:225–236

    Article  Google Scholar 

  • O'Toole G, Kaplan HB et al (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701

    Article  PubMed  CAS  Google Scholar 

  • Pascual A (2002) Pathogenesis of catheter-related infections: lessons for new designs. Clin Microbiol Infect 8(5):256–264

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski KS, Wawro D et al (2005) Bacterial biofilm formation on a human cochlear implant. Otol Neurotol 26(5):972–975

    Article  PubMed  Google Scholar 

  • Percival SL, Bowler PG (2004) Biofilms and their potential role in wound healing. Wounds 16:234–240

    Google Scholar 

  • Percival SL, Bowler P et al (2008) Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair Regen 16:52–57

    Article  PubMed  Google Scholar 

  • Potera C (1999) Forging a link between biofilms and disease. Science 283(5409):1837–1839

    Article  PubMed  CAS  Google Scholar 

  • Sol J, Sampimon OC et al (1997) Factors associated with bacteriological cure during lactation after therapy for subclinical mastitis caused by Staphylococcus aureus. J Dairy Sci 80(11):2803–2808

    Article  PubMed  CAS  Google Scholar 

  • Songer JG, Post KW (2005) Veterinary microbiology: bacterial and fungal agents of animal disease. Elsevier Saunders, Missouri

    Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  PubMed  CAS  Google Scholar 

  • Stickler D, Ganderton L et al (1993) Proteus mirabilis; biofilms and the encrustation of urethral catheters. Urol Res 21(6):407–411

    Article  PubMed  CAS  Google Scholar 

  • Suller MTE, Anthony VJ et al (2005) Factors modulating the pH at which calcium and magnesium phosphates precipitate from human urine. Urol Res 33(4):254–260

    Article  PubMed  CAS  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  • Targowski SP (1983) Role of immune factors in protection of mammary gland. J Dairy Sci 66(8):1781–1789

    Article  PubMed  CAS  Google Scholar 

  • Tenke P, Kovacs B et al (2006) The role of biofilm infection in urology. World J Urol 24(1):13–20

    Article  PubMed  CAS  Google Scholar 

  • Theoret CL (2004) Wound repair in the horse: problems and proposed innovative solutions. Clin Tech Equine Prac 3:134–140

    Article  Google Scholar 

  • Theoret CL (2006) Wound repair: equine surgery. WB Saunders, Saint Louis, pp 44–62

    Book  Google Scholar 

  • Turetgen I, Ilhan-Sungur E, Cotuk A (2007) Effects of short-term drying on biofilm-associated bacteria. Annals of Microbiology 57(2):277–280

    Google Scholar 

  • Waldorf H, Fewkes J (1995) Wound healing. Adv Dermatol 10:77–96

    PubMed  CAS  Google Scholar 

  • Waldron DR, Zimmerman-Pope N (2003) Superficial skin wounds. In: Slater D (ed) Textbook of small animal surgery. WB Saurnders, Philadelphia, pp 259–273

    Google Scholar 

  • Ward KH, Olson ME et al (1992) Mechanism of persistent infection associated with peritoneal implants. J Med Microbiol 36(6):406–413

    Article  PubMed  CAS  Google Scholar 

  • Warren JW (2001) Catheter-associated urinary tract infections. Int J Antimicrob Agents 17(4):299–303

    Article  PubMed  CAS  Google Scholar 

  • Wieman TJ (2005) Principles of management: the diabetic foot. Am J Surg 190(2):295–299

    Article  PubMed  Google Scholar 

  • Wilson DJ, Gonzalez RN et al (1999) Comparison of seven antibiotic treatments with no treatment for bacteriological efficacy against bovine mastitis pathogens. J Dairy Sci 82(8):1664–1670

    Article  PubMed  CAS  Google Scholar 

  • Wyder AB, Boss R et al (2011) Streptococcus spp. and related bacteria: their identification and their pathogenic potential for chronic mastitis: a molecular approach. Res Vet Sci (in press)

    Google Scholar 

  • Xu KD, McFeters GA et al (2000) Biofilm resistance to antimicrobial agents. Microbiology 146(3):547–549

    PubMed  CAS  Google Scholar 

  • Zou S, Brady HA et al (1998) Protective factors in mammary gland secretions during the periparturient period in the mare. J Equine Vet Sci 18(3):184–188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine A. Cochrane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gardner, A.J., Percival, S.L., Cochrane, C.A. (2011). Biofilms and Role to Infection and Disease in Veterinary Medicine. In: Percival, S., Knottenbelt, D., Cochrane, C. (eds) Biofilms and Veterinary Medicine. Springer Series on Biofilms, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21289-5_4

Download citation

Publish with us

Policies and ethics